Published July 12, 2024 | Version v1
Journal article Open

ECOSENSE - Multi-scale quantification and modelling of spatio-temporal dynamics of ecosystem processes by smart autonomous sensor networks

  • 1. Chair of Ecosystem Physiology, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
  • 2. Laboratory for Micoactuators, Department of Microsystems Engineering—IMTEK, University of Freiburg, Freiburg, Germany
  • 3. Chair of Environmental Meteorology, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
  • 4. Laboratory for Design of Microsystems, Department of Microsystems Engineering—IMTEK, University of Freiburg, Freiburg, Germany
  • 5. Chair of Biometry and Environmental Analysis, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
  • 6. Chair of Remote Sensing and Landscape Information Systems, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
  • 7. Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
  • 8. Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • 9. Chair of Soil Ecology, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
  • 10. Laboratory for Chemistry and Physics of Interfaces Department of Microsystems Engineering—IMTEK, University of Freiburg, Freiburg, Germany
  • 11. Chair for Monitoring of Large-Scale Structures, Department of Sustainable Systems Engineering INATECH, University of Freiburg; Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany
  • 12. Laboratory for Electrical Instrumentation and Embedded Systems, Department of Microsystems Engineering—IMTEK, University of Freiburg, Freiburg, Germany
  • 13. Laboratory for Gas Sensors, Department of Microsystems Engineering—IMTEK, University of Freiburg; Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany
  • 14. Chair of Hydrology, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany

Description

Global climate change threatens ecosystem functioning worldwide. Forest ecosystems are particularly important for carbon sequestration, thereby buffering climate change and providing socio-economic services. However, recurrent stresses, such as heat waves, droughts and floods can affect forests with potential cascading effects on their carbon sink capacity, drought resilience and sustainability. Knowledge about the stress impact on the multitude of processes driving soil-plant-atmosphere interactions within these complex forest systems is widely lacking and uncertainty about future changes extremely high. Thus, forecasting forest response to climate change will require a dramatically improved process understanding of carbon and water cycling across various temporal (minutes to seasons) and spatial (leaf to ecosystem) scales covering atmosphere, biosphere, pedosphere and hydrosphere components.

Many relevant processes controlling carbon and water exchange occur at small scales (e.g. rhizosphere, single leaf) with a high spatial and temporal variability, which is poorly constrained. However, interactions and feedback loops can be key players that amplify or dampen a system's response to stress. Moreover, spatial and temporal scaling rules for these non-linear processes in structurally and functionally diverse ecosystems are unknown. Legacy effects, for example, altered response after previous stress and retarded recovery of forests after climate extremes, are not captured in state-of-the-art models. Currently, we are lacking the appropriate and interconnected measurement, data assimilation and modelling tools allowing for a comprehensive, real-time quantification of key processes at high spatio-temporal coverage in heterogeneous environments. Moreover, since climate impacts are highly unpredictable with respect to timing and location, future research will require novel mobile, easily deployable and cost-efficient approaches. ECOSENSE, therefore, assembles expertise from environmental and engineering sciences, both being excellently paired at the University of Freiburg.

Our interdisciplinary research project will investigate all relevant scales in a next-generation ecosystem research assessment (ECOSENSE). Our vision is to detect and forecast critical changes in ecosystem functioning, based on the understanding of hierarchical process interaction. In the first phase, ECOSENSE will explore these process interactions by investigating pools and fluxes of water and carbon, i.e. CO2 exchange, isotope discrimination and volatile organic compounds (VOC), as well as stress indicators by remotely and in situ sensed chlorophyll fluorescence.

To address these research tasks, ECOSENSE will develop, implement and test a distributed, autonomous, intelligent sensor network, based on novel microsensors tailored to the specific needs in remote and harsh forest environments. They will measure the spatio-temporal dynamics of ecosystem pools and fluxes in a naturally complex structured forest system with minimal physiological impact. Measured data will be transferred in real-time into a sophisticated database, which will be explored for process analysis, conducted by Artificial Intelligence and close to real-time process-based ecosystem models for now- and forecasting applications. Thereby, ECOSENSE will: i) break new ground for integrative ecosystem research by identifying hierarchies and interactions of abiotic and physiological processes of forest carbon and water exchange, ii) provide a profound understanding of complex ecosystem responses to environmental stressors and iii) enable the prediction of process-based alterations in ecosystem functioning and sustainability.

Our novel ECOSENSE toolkit, tested and validated in controlled climate extreme experiments and our ECOSENSE Forest, will open new horizons for rapid assessment in vast and remote ecosystems. Thereby, ECOSENSE will allow for a unique avenue of data acquisition and, consequently, for unprecedented scale-crossing ecosystem understanding and modelling.

Files

RIO_article_129357.pdf

Files (2.4 MB)

Name Size Download all
md5:886183b678d23affd4f1b9de959bb674
2.0 MB Preview Download
md5:26364d6f7ef7cf33324434f31e00e8c9
455.6 kB Preview Download

Additional details

References

  • Aasen, Van Wittenberghe, Medina, Damm, Goulas, Wieneke, Hueni, Malenovský, Alonso, Pacheco-Labrador, Cendrero-Mateo, Tomelleri, Burkart, Cogliati, Rascher, Arthur (2019) Sun-Induced Chlorophyll Fluorescence II: Review of Passive Measurement Setups, Protocols, and Their Application at the Leaf to Canopy Level. Remote Sensing 11 (8). https://doi.org/10.3390/rs11080927
  • Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture 44 (1): 71‑91. https://doi.org/10.1016/j.compag.2004.03.002
  • Aguirre‐Gutiérrez J, Oliveras I, Rifai S, Fauset S, Adu‐Bredu S, Affum‐Baffoe K, Baker T, Feldpausch T, Gvozdevaite A, Hubau W, Kraft NB, Lewis S, Moore S, Niinemets Ü, Peprah T, Phillips O, Ziemińska K, Enquist B, Malhi Y (2019) Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecology Letters 22 (5): 855‑865. https://doi.org/10.1111/ele.13243
  • Alber M, Buganza Tepole A, Cannon W, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton W, Perdikaris P, Petzold L, Kuhl E (2019) Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digital Medicine 2 (1). https://doi.org/10.1038/s41746-019-0193-y
  • Ali MI, Al-Hashimi BM, Recas J, Atienza D (2010) Evaluation and design exploration of solar harvested-energy prediction algorithm. 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). [ISBN 978-3-9810801-6-2 978-1-4244-7054-9]. https://doi.org/10.1109/DATE.2010.5457222
  • Alonso L, Gomez-Chova L, Vila-Frances J, Amoros-Lopez J, Guanter L, Calpe J, Moreno J (2008) Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification. IEEE Geoscience and Remote Sensing Letters 5 (4): 620‑624. https://doi.org/10.1109/LGRS.2008.2001180
  • Anderegg WL, Konings A, Trugman A, Yu K, Bowling D, Gabbitas R, Karp D, Pacala S, Sperry J, Sulman B, Zenes N (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561 (7724): 538‑541. https://doi.org/10.1038/s41586-018-0539-7
  • Anderegg WL, Anderegg LL, Huang C (2019) Testing early warning metrics for drought‐induced tree physiological stress and mortality. Global Change Biology 25 (7): 2459‑2469. https://doi.org/10.1111/gcb.14655
  • Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmospheric Chemistry and Physics 8 (16): 4605‑4620. https://doi.org/10.5194/acp-8-4605-2008
  • Arneth A, Sitch S, Bondeau A, Butterbach-Bahl K, Foster P, Gedney N, De Noblet-Ducoudré N, Prentice IC, Sanderson M, Thonicke K, Wania R, Zaehle S (2010) From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7 (1): 121‑149. https://doi.org/10.5194/bg-7-121-2010
  • Austria Microsystems Datasheet v1-62 (2014) AS3930 - Single Channel Low Frequency Wakeup Receiver.
  • Bachmair S, Weiler M, Nützmann G (2009) Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone. Transfer of pollutants in soils, sediments and water systems: From small to large scale (AquaTerra) 369 (3): 241‑252. https://doi.org/10.1016/j.jhydrol.2009.02.031
  • Bauhus J, Forrester D, Gardiner B, Jactel H, Vallejo R, Pretzsch H (2017) Ecological Stability of Mixed-Species Forests. In: Pretzsch H, Forrester DI, Bauhus J (Eds) Mixed-Species Forests. [ISBN 978-3-662-54551-5 978-3-662-54553-9]. https://doi.org/10.1007/978-3-662-54553-9_7
  • Bennett S, Finlay J, Gunari N, Wells D, Meyer A, Walker G, Callow M, Callow J, Bright F, Detty M (2009) The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling. Biofouling 26 (2): 235‑246. https://doi.org/10.1080/08927010903469676
  • Bieker K, Peitz S, Brunton S, Kutz JN, Dellnitz M (2019) Deep Model Predictive Control with Online Learning for Complex Physical Systems. ArXi https://doi.org/10.48550/ARXIV.1905.10094
  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170 (4): 489‑504. https://doi.org/10.1007/BF00402983
  • Bonan G (2008) Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 320 (5882): 1444‑1449. https://doi.org/10.1126/science.1155121
  • Bonn B, Magh R-, Rombach J, Kreuzwieser J (2019) Biogenic isoprenoid emissions under drought stress: different responses for isoprene and terpenes. Biogeosciences 16 (23): 4627‑4645. https://doi.org/10.5194/bg-16-4627-2019
  • Brunton SL, Kutz JN (2019) Methods for data-driven multiscale model discovery for materials. Journal of Physics: Materials 2 (4). https://doi.org/10.1088/2515-7639/ab291e
  • Cammarano A, Petrioli C, Spenza D (2012) Pro-Energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012). [ISBN 978-1-4673-2433-5 978-1-4673-2432-8]. https://doi.org/10.1109/MASS.2012.6502504
  • Cepnik C, Lausecker R, Wallrabe U (2013) Review on Electrodynamic Energy Harvesters—A Classification Approach. Micromachines 4 (2): 168‑196. https://doi.org/10.3390/mi4020168
  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437 (7058): 529‑533. https://doi.org/10.1038/nature03972
  • Coates KD, Canham CD, Beaudet M, Sachs DL, Messier C (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecology and Management 186 (1): 297‑310. https://doi.org/10.1016/S0378-1127(03)00301-3
  • Cogliati S, Verhoef W, Kraft S, Sabater N, Alonso L, Vicent J, Moreno J, Drusch M, Colombo R (2015) Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sensing of Environment 169: 344‑357. https://doi.org/10.1016/j.rse.2015.08.022
  • Collalti A, Marconi S, Ibrom A, Trotta C, Anav A, D'Andrea E, Matteucci G, Montagnani L, Gielen B, Mammarella I, Grünwald T, Knohl A, Berninger F, Zhao Y, Valentini R, Santini M (2016) Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development 9 (2): 479‑504. https://doi.org/10.5194/gmd-9-479-2016
  • Courtois EA, Stahl C, Burban B, Van Den Berge J, Berveiller D, Bréchet L, Soong JL, Arriga N, Peñuelas J, Janssens IA (2019) Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest. Biogeosciences 16 (3): 785‑796. https://doi.org/10.5194/bg-16-785-2019
  • Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P (2017) Plant metabolism as studied by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 102-103: 61‑97. https://doi.org/10.1016/j.pnmrs.2017.05.001
  • Dietze M (2017) Ecological Forecasting. Princeton University Press https://doi.org/10.1515/9781400885459
  • Dı́az S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16 (11): 646‑655. https://doi.org/10.1016/S0169-5347(01)02283-2
  • Dubbert M, Cuntz M, Piayda A, Werner C (2014) Oxygen isotope signatures of transpired water vapor: the role of isotopic non‐steady‐state transpiration under natural conditions. New Phytologist 203 (4): 1242‑1252. https://doi.org/10.1111/nph.12878
  • Dubbert M, Caldeira M, Dubbert D, Werner C (2019) A pool‐weighted perspective on the two‐water‐worlds hypothesis. New Phytologist 222 (3): 1271‑1283. https://doi.org/10.1111/nph.15670
  • Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1): 78‑90. https://doi.org/10.1007/BF00386231
  • Fer I, Kelly R, Moorcroft P, Richardson A, Cowdery E, Dietze M (2018) Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation. Biogeosciences 15 (19): 5801‑5830. https://doi.org/10.5194/bg-15-5801-2018
  • Fiore A, Naik V, Spracklen D, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith P, Cionni I, Collins W, Dalsøren S, Eyring V, Folberth G, Ginoux P, Horowitz L, Josse B, Lamarque J, MacKenzie I, Nagashima T, O'Connor F, Righi M, Rumbold S, Shindell D, Skeie R, Sudo K, Szopa S, Takemura T, Zeng G (2012) Global air quality and climate. Chemical Society Reviews 41 (19). https://doi.org/10.1039/c2cs35095e
  • Forbes P (2008) Self-cleaning materials. Scientific American 299: 88‑95. https://doi.org/10.1038/scientificamerican0808-88
  • Friedlingstein P, O'Sullivan M, Jones M, Andrew R, Hauck J, Olsen A, Peters G, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J, Ciais P, Jackson R, Alin S, Aragão LOC, Arneth A, Arora V, Bates N, Becker M, Benoit-Cattin A, Bittig H, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L, Evans W, Florentie L, Forster P, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R, Ilyina T, Jain A, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken JI, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D, Nabel JMS, Nakaoka S, Niwa Y, O'Brien K, Ono T, Palmer P, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith AP, Sutton A, Tanhua T, Tans P, Tian H, Tilbrook B, Van Der Werf G, Vuichard N, Walker A, Wanninkhof R, Watson A, Willis D, Wiltshire A, Yuan W, Yue X, Zaehle S (2020) Global Carbon Budget 2020. Earth System Science Data 12 (4): 3269‑3340. https://doi.org/10.5194/essd-12-3269-2020
  • Fu D, Millet D, Wells K, Payne V, Yu S, Guenther A, Eldering A (2019) Direct retrieval of isoprene from satellite-based infrared measurements. Nature Communications 10 (1). https://doi.org/10.1038/s41467-019-11835-0
  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bulletin of the American Meteorological Society 81 (7). https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
  • Gabrys J (2020) Smart forests and data practices: From the Internet of Trees to planetary governance. Big Data & Society 7 (1). https://doi.org/10.1177/2053951720904871
  • Gamm GU, Sippel M, Kostic M, Reindl L (2010) Low power wake-up receiver for wireless sensor nodes. 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. [ISBN 978-1-4244-7174-4]. https://doi.org/10.1109/ISSNIP.2010.5706778
  • Gerigk U, Schneider U, Stewen U (1998) The Present Status of TBT Copolymer Antifouling Paints versus TBT-Free Technology. 38. Preprints of Extended Abstracts.
  • Ge Z, Mahapatra D, Sedai S, Garnavi R, Chakravorty R (2018) Chest X-rays Classification: A Multi-Label and Fine-Grained Problem. arXiv. Version Number: 3. https://doi.org/10.48550/ARXIV.1807.07247
  • Ghirardo A, Koch K, Taipale R, Zimmer I, Schnitzler J, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13 CO 2 labelling and PTR‐MS analysis. Plant, Cell & Environment 33 (5): 781‑792. https://doi.org/10.1111/j.1365-3040.2009.02104.x
  • Göritz A, Berger S, Gege P, Grossart H, Nejstgaard J, Riedel S, Röttgers R, Utschig C (2018) Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany). Remote Sensing 10 (2). https://doi.org/10.3390/rs10020181
  • Grossiord C (2020) Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytologist 228 (1): 42‑49. https://doi.org/10.1111/nph.15667
  • Grote R, Pretzsch H (2002) A Model for Individual Tree Development Based on Physiological Processes. Plant Biology 4 (2): 167‑180. https://doi.org/10.1055/s-2002-25743
  • Grote R, Korhonen J, Mammarella I (2011) Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species. Forest Systems 20: 42‑49. https://doi.org/10.5445/IR/110086971
  • Grote R, Kraus D, Weis W, Ettl R, Göttlein A (2020) Dynamic coupling of allometric ratios to a process-based forest growth model for estimating the impacts of stand density changes. Forestry: An International Journal of Forest Research 93 (5): 601‑615. https://doi.org/10.1093/forestry/cpaa002
  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5 (6): 1471‑1492. https://doi.org/10.5194/gmd-5-1471-2012
  • Guo X, Shen Z, Zhang Y, Wu T (2019) Review on the Application of Artificial Intelligence in Smart Homes. Smart Cities 2 (3): 402‑420. https://doi.org/10.3390/smartcities2030025
  • Guswa A (2012) Canopy vs. Roots: Production and Destruction of Variability in Soil Moisture and Hydrologic Fluxes. Vadose Zone Journal 11 (3). https://doi.org/10.2136/vzj2011.0159
  • Guswa A, Spence C (2012) Effect of throughfall variability on recharge: application to hemlock and deciduous forests in western Massachusetts. Ecohydrology 5 (5): 563‑574. https://doi.org/10.1002/eco.281
  • Haberstroh S, Kreuzwieser J, Boeddeker H, Eiblmeier M, Gutte H, Lobo-do-Vale R, Caldeira M, Werner C (2019) Natural Carbon Isotope Composition Distinguishes Compound Groups of Biogenic Volatile Organic Compounds (BVOC) in Two Mediterranean Woody Species. Frontiers in Forests and Global Change 2 https://doi.org/10.3389/ffgc.2019.00055
  • Haberstroh S, Caldeira M, Lobo‐do‐Vale R, Martins J, Moemken J, Pinto J, Werner C (2021) Nonlinear plant–plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. New Phytologist 231 (5): 1784‑1797. https://doi.org/10.1111/nph.17522
  • Han W, Zhang Z, Zhang Y, Yu J, Chiu C, Qin J, Gulati A, Pang R, Wu Y (2020) ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. arXiv. Version Number: 3. https://doi.org/10.48550/ARXIV.2005.03191
  • Heller S, Woias P (2019) Microwatt power hardware implementation of machine learning algorithms on MSP430 microcontrollers. 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). [ISBN 978-1-72810-996-1]. https://doi.org/10.1109/ICECS46596.2019.8964726
  • Homan NM, Windt CW, Vergeldt FJ, Gerkema E, Van As H (2007) 0.7 and 3 T MRI and Sap Flow in Intact Trees: Xylem and Phloem in Action. Applied Magnetic Resonance 32 (1-2): 157‑170. https://doi.org/10.1007/s00723-007-0014-3
  • Hönes R, Rühe J (2018) "Nickel Nanoflowers" with Surface-Attached Fluoropolymer Networks by C,H Insertion for the Generation of Metallic Superhydrophobic Surfaces. Langmuir 34 (18): 5342‑5351. https://doi.org/10.1021/acs.langmuir.7b03915
  • Huang Y, Xu D, Kan J, Li W (2019) Study on field experiments of forest soil thermoelectric power generation devices. PLOS ONE 14 (8). https://doi.org/10.1371/journal.pone.0221019
  • Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil 318 (1-2): 311‑325. https://doi.org/10.1007/s11104-008-9843-6
  • Jansson C, Faiola C, Wingler A, Zhu X, Kravchenko A, De Graaff M, Ogden A, Handakumbura P, Werner C, Beckles D (2021) Crops for Carbon Farming. Frontiers in Plant Science 12 https://doi.org/10.3389/fpls.2021.636709
  • Jokinen V, Suvanto P, Franssila S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6 (1). https://doi.org/10.1063/1.3673251
  • Jonard M, André F, De Coligny F, De Wergifosse L, Beudez N, Davi H, Ligot G, Ponette Q, Vincke C (2020) HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 1: Carbon fluxes and tree dimensional growth. Geoscientific Model Development 13 (3): 905‑935. https://doi.org/10.5194/gmd-13-905-2020
  • Jouda M, Gruschke O, Korvink J (2015) Implementation of an in‐field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. International Journal of Circuit Theory and Applications 43 (12): 1861‑1878. https://doi.org/10.1002/cta.2043
  • Jouda M, Kamberger R, Leupold J, Spengler N, Hennig J, Gruschke O, Korvink J (2017) A comparison of Lenz lenses and LC resonators for NMR signal enhancement. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 47B (3). https://doi.org/10.1002/cmr.b.21357
  • Jouda M, Fuhrer E, Silva P, Korvink J, MacKinnon N (2019) Automatic Adaptive Gain for Magnetic Resonance Sensitivity Enhancement. Analytical Chemistry 91 (3): 2376‑2383. https://doi.org/10.1021/acs.analchem.8b05148
  • Kalaji H, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I, Cetner M, Łukasik I, Goltsev V, Ladle R (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum 38 (4). https://doi.org/10.1007/s11738-016-2113-y
  • Kannenberg SA, Bowling DR, Anderegg WRL (2020) Hot moments in ecosystem fluxes: High GPP anomalies exert outsized influence on the carbon cycle and are differentially driven by moisture availability across biomes. Environmental Research Letters 15 (5). https://doi.org/10.1088/1748-9326/ab7b97
  • Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. Journal of Hydrology 314 (1-4): 263‑274. https://doi.org/10.1016/j.jhydrol.2005.03.021
  • Kingshott P, Griesser H (1999) Surfaces that resist bioadhesion. Current Opinion in Solid State and Materials Science 4 (4): 403‑412. https://doi.org/10.1016/S1359-0286(99)00018-2
  • Köckenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201 (1): 53‑63. https://doi.org/10.1007/BF01258680
  • Kreuzwieser J, Meischner M, Grün M, Yáñez‐Serrano AM, Fasbender L, Werner C (2021) Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles. New Phytologist 232 (5): 1930‑1943. https://doi.org/10.1111/nph.17736
  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32 (11-12): 1485‑1498. https://doi.org/10.1016/S0038-0717(00)00084-5
  • Kuzyakov Y, Gavrichkova O (2010) REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16 (12): 3386‑3406. https://doi.org/10.1111/j.1365-2486.2010.02179.x
  • Lathière J, Hauglustaine DA, Friend AD, De Noblet-Ducoudré N, Viovy N, Folberth GA (2006) Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmospheric Chemistry and Physics 6 (8): 2129‑2146. https://doi.org/10.5194/acp-6-2129-2006
  • Lejars M, Margaillan A, Bressy C (2012) Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chemical Reviews 112 (8): 4347‑4390. https://doi.org/10.1021/cr200350v
  • Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4 https://doi.org/10.3389/fpls.2013.00272
  • Le Quéré C, Andrew R, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers P, Korsbakken JI, Peters G, Canadell J, Arneth A, Arora V, Barbero L, Bastos A, Bopp L, Chevallier F, Chini L, Ciais P, Doney S, Gkritzalis T, Goll D, Harris I, Haverd V, Hoffman F, Hoppema M, Houghton R, Hurtt G, Ilyina T, Jain A, Johannessen T, Jones C, Kato E, Keeling R, Goldewijk KK, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro D, Nabel JMS, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans P, Tian H, Tilbrook B, Tubiello F, Van Der Laan-Luijkx I, Van Der Werf G, Viovy N, Walker A, Wiltshire A, Wright R, Zaehle S, Zheng B (2018) Global Carbon Budget 2018. Earth System Science Data 10 (4): 2141‑2194. https://doi.org/10.5194/essd-10-2141-2018
  • Levine N, Zhang K, Longo M, Baccini A, Phillips O, Lewis S, Alvarez-Dávila E, Segalin De Andrade AC, Brienen RW, Erwin T, Feldpausch T, Monteagudo Mendoza AL, Nuñez Vargas P, Prieto A, Silva-Espejo JE, Malhi Y, Moorcroft P (2016) Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences 113 (3): 793‑797. https://doi.org/10.1073/pnas.1511344112
  • Liu S, Wu Q, Qiu Q (2009) An adaptive scheduling and voltage/frequency selection algorithm for real-time energy harvesting systems. 2009 46th ACM/IEEE Design Automation Conference. [ISBN 0738-100X]. https://doi.org/10.1145/1629911.1630113
  • Lloret J, Garcia M, Bri D, Sendra S (2009) A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors 9 (11): 8722‑8747. https://doi.org/10.3390/s91108722
  • McClain M, Boyer E, Dent CL, Gergel S, Grimm N, Groffman P, Hart S, Harvey J, Johnston C, Mayorga E, McDowell W, Pinay G (2003) Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems 6 (4): 301‑312. https://doi.org/10.1007/s10021-003-0161-9
  • McDowell N, Allen C, Anderson-Teixeira K, Aukema B, Bond-Lamberty B, Chini L, Clark J, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt G, Jackson R, Johnson D, Kueppers L, Lichstein J, Ogle K, Poulter B, Pugh TM, Seidl R, Turner M, Uriarte M, Walker A, Xu C (2020) Pervasive shifts in forest dynamics in a changing world. Science 368 (6494). https://doi.org/10.1126/science.aaz9463
  • McKeen L (2013) Fluorinated Coatings. In: Ebnesajjad S (Ed.) Introduction to Fluoropolymers. URL: https://linkinghub.elsevier.com/retrieve/pii/B9781455774425000115 [ISBN 978-1-4557-7442-5].
  • Medlyn B, Duursma R, Zeppel MB (2011) Forest productivity under climate change: a checklist for evaluating model studies. WIREs Climate Change 2 (3): 332‑355. https://doi.org/10.1002/wcc.108
  • Mekki K, Bajic E, Chaxel F, Meyer F (2019) A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 5 (1): 1‑7. https://doi.org/10.1016/j.icte.2017.12.005
  • Miguez-Macho G, Fan Y (2021) Spatiotemporal origin of soil water taken up by vegetation. Nature 598 (7882): 624‑628. https://doi.org/10.1038/s41586-021-03958-6
  • Mohammed G, Colombo R, Middleton E, Rascher U, Van Der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry J, Miller J, Guanter L, Moreno J, Moya I, Berry J, Frankenberg C, Zarco-Tejada P (2019) Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of Environment 231 https://doi.org/10.1016/j.rse.2019.04.030
  • Molina-Herrera S, Grote R, Santabárbara-Ruiz I, Kraus D, Klatt S, Haas E, Kiese R, Butterbach-Bahl K (2015) Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model "LandscapeDNDC". Forests 6 (6): 1779‑1809. https://doi.org/10.3390/f6061779
  • Nenninger P, Ulrich M, Kaul H (2010) On the Energy Problem of Wireless Applications in Industrial Automation. IFAC Proceedings Volumes 43 (23): 128‑132. https://doi.org/10.3182/20101005-4-RO-2018.00041
  • Neves P, Stachyra M, Rodrigues J (2008) Application of Wireless Sensor Networks to Healthcare Promotion. Journal of Communications Software and Systems 4 (3). https://doi.org/10.24138/jcomss.v4i3.218
  • Otu‐Larbi F, Bolas C, Ferracci V, Staniaszek Z, Jones R, Malhi Y, Harris NP, Wild O, Ashworth K (2020) Modelling the effect of the 2018 summer heatwave and drought on isoprene emissions in a UK woodland. Global Change Biology 26 (4): 2320‑2335. https://doi.org/10.1111/gcb.14963
  • Pandiyarajan CK, Prucker O, Zieger B, Rühe J (2013) Influence of the Molecular Structure of Surface-Attached Poly (N -alkyl Acrylamide) Coatings on the Interaction of Surfaces with Proteins, Cells and Blood Platelets: Influence of the Molecular Structure of Surface-Attached Poly (N -alkyl Acrylamide) …. Macromolecular Bioscience 13 (7): 873‑884. https://doi.org/10.1002/mabi.201200445
  • Papyan V, Talmon R (2018) Multimodal latent variable analysis. Signal Processing 142: 178‑187. https://doi.org/10.1016/j.sigpro.2017.07.016
  • Peaucelle M, Bacour C, Ciais P, Vuichard N, Kuppel S, Peñuelas J, Belelli Marchesini L, Blanken P, Buchmann N, Chen J, Delpierre N, Desai A, Dufrene E, Gianelle D, Gimeno‐Colera C, Gruening C, Helfter C, Hörtnagl L, Ibrom A, Joffre R, Kato T, Kolb T, Law B, Lindroth A, Mammarella I, Merbold L, Minerbi S, Montagnani L, Šigut L, Sutton M, Varlagin A, Vesala T, Wohlfahrt G, Wolf S, Yakir D, Viovy N (2019) Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography 28 (9): 1351‑1365. https://doi.org/10.1111/geb.12937
  • Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133 (1): 1‑9. https://doi.org/10.1007/s00442-002-1008-3
  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell J, Cong N, Huntingford C, Jung M, Levis S, Levy P, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni R, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO 2 trends. Global Change Biology 19 (7): 2117‑2132. https://doi.org/10.1111/gcb.12187
  • Plascyk J, Gabriel F (1975) The Fraunhofer Line Discriminator MKII-An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement. IEEE Transactions on Instrumentation and Measurement 24 (4): 306‑313. https://doi.org/10.1109/TIM.1975.4314448
  • Pugh TM, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L (2019) Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences 116 (10): 4382‑4387. https://doi.org/10.1073/pnas.1810512116
  • Pugnaire F, Morillo J, Peñuelas J, Reich P, Bardgett R, Gaxiola A, Wardle D, Van Der Putten W (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances 5 (11). https://doi.org/10.1126/sciadv.aaz1834
  • Rascher KG, Maguas C, Werner C (2010) On the use of phloem sap 13C as an indicator of canopy carbon discrimination. Tree Physiology 30 (12): 1499‑1514. https://doi.org/10.1093/treephys/tpq092
  • Ratcliffe S, Wirth C, Jucker T, Van Der Plas F, Scherer‐Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, Wandeler HD, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund‐Rasmussen K, Roger F, Ruiz‐Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters 20 (11): 1414‑1426. https://doi.org/10.1111/ele.12849
  • Reichstein M, Papale D, Valentini R, Aubinet M, Bernhofer C, Knohl A, Laurila T, Lindroth A, Moors E, Pilegaard K, Seufert G (2007) Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters 34 (1). https://doi.org/10.1029/2006GL027880
  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566 (7743): 195‑204. https://doi.org/10.1038/s41586-019-0912-1
  • Renner M, Hassler S, Blume T, Weiler M, Hildebrandt A, Guderle M, Schymanski S, Kleidon A (2016) Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrology and Earth System Sciences 20 (5): 2063‑2083. https://doi.org/10.5194/hess-20-2063-2016
  • Robinson AP, Ek AR (2000) The consequences of hierarchy for modeling in forest ecosystems. Canadian Journal of Forest Research 30 (12): 1837‑1846. https://doi.org/10.1139/x00-117
  • Ruiz-Benito P, Vacchiano G, Lines E, Reyer CO, Ratcliffe S, Morin X, Hartig F, Mäkelä A, Yousefpour R, Chaves J, Palacios-Orueta A, Benito-Garzón M, Morales-Molino C, Camarero JJ, Jump A, Kattge J, Lehtonen A, Ibrom A, Owen HF, Zavala M (2020) Available and missing data to model impact of climate change on European forests. Ecological Modelling 416 https://doi.org/10.1016/j.ecolmodel.2019.108870
  • Safaei M, Jafari R, Datta P, Bashari H, Pothier D, Koch B (2022) Spatial scale effect of Sentinel-2, Landsat OLI, and MODIS imagery in the assessment of landscape condition of Zagros mountains. Geocarto International 37 (18): 5345‑5362. https://doi.org/10.1080/10106049.2021.1914745
  • Sánchez-Cañete E, Barron-Gafford G, Chorover J (2018) A considerable fraction of soil-respired CO2 is not emitted directly to the atmosphere. Scientific Reports 8 (1). https://doi.org/10.1038/s41598-018-29803-x
  • Sardar MS, Yi Y, Xue-fen W, Huang J, Zhang J, Qin X, Zhao Q, Wang Y, Iqbal MA (2018) Experimental Analysis of LoRa CSS Wireless Transmission Characteristics for Forestry Monitoring and Sensing. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI). [ISBN 978-1-5386-5638-9]. https://doi.org/10.1109/ISSI.2018.8538171
  • Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, Schmidtlein S (2020) Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing 170: 205‑215. https://doi.org/10.1016/j.isprsjprs.2020.10.015
  • Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, Gharun M, Grams TE, Hauck M, Hajek P, Hartmann H, Hiltbrunner E, Hoch G, Holloway-Phillips M, Körner C, Larysch E, Lübbe T, Nelson D, Rammig A, Rigling A, Rose L, Ruehr N, Schumann K, Weiser F, Werner C, Wohlgemuth T, Zang C, Kahmen A (2020) A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology 45: 86‑103. https://doi.org/10.1016/j.baae.2020.04.003
  • Sepasgozar S, Karimi R, Farahzadi L, Moezzi F, Shirowzhan S, M. Ebrahimzadeh S, Hui F, Aye L (2020) A Systematic Content Review of Artificial Intelligence and the Internet of Things Applications in Smart Home. Applied Sciences 10 (9). https://doi.org/10.3390/app10093074
  • Sethi S, Ewers R, Jones N, Orme C, Picinali L (2018) Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods in Ecology and Evolution 9 (12): 2383‑2387. https://doi.org/10.1111/2041-210X.13089
  • Sharkey T, Monson R (2017) Isoprene research – 60 years later, the biology is still enigmatic. Plant, Cell & Environment 40 (9): 1671‑1678. https://doi.org/10.1111/pce.12930
  • Silva P, Delgado ST, Jouda M, Mager D, Korvink J (2019) A multi-purpose, rolled-up, double-helix resonator. Journal of Magnetic Resonance 309 https://doi.org/10.1016/j.jmr.2019.106599
  • Silva P, Jouda M, Korvink J (2020) Geometrically-differential NMR in a stripline front-end. Journal of Magnetic Resonance 310 https://doi.org/10.1016/j.jmr.2019.106659
  • Silva V, Silva C, Soares P, Garrido EM, Borges F, Garrido J (2020) Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles. Molecules 25 (4). https://doi.org/10.3390/molecules25040991
  • Šimpraga M, Ghimire R, Van Der Straeten D, Blande J, Kasurinen A, Sorvari J, Holopainen T, Adriaenssens S, Holopainen J, Kivimäenpää M (2019) Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. European Journal of Forest Research 138 (5): 763‑787. https://doi.org/10.1007/s10342-019-01213-2
  • Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, Stavrakou T, Müller J-, Kuhn U, Stefani P, Knorr W (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics 14 (17): 9317‑9341. https://doi.org/10.5194/acp-14-9317-2014
  • Singh H, Zimmerman P (1992) Atmospheric distribution and sources of nonmethane hydrocarbons. Advances in environmental science and technology 24: 177‑235. URL: https://api.semanticscholar.org/CorpusID:129274915
  • Spengler N, While P, Meissner M, Wallrabe U, Korvink J (2017) Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance. PLOS ONE 12 (8). https://doi.org/10.1371/journal.pone.0182779
  • Sprenger M, Stumpp C, Weiler M, Aeschbach W, Allen S, Benettin P, Dubbert M, Hartmann A, Hrachowitz M, Kirchner J, McDonnell J, Orlowski N, Penna D, Pfahl S, Rinderer M, Rodriguez N, Schmidt M, Werner C (2019) The Demographics of Water: A Review of Water Ages in the Critical Zone. Reviews of Geophysics 57 (3): 800‑834. https://doi.org/10.1029/2018RG000633
  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque Á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana J-, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su S-, Sun I, Tan S, Thomas D, Van Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507 (7490): 90‑93. https://doi.org/10.1038/nature12914
  • Stoppa M, Chiolerio A (2014) Wearable Electronics and Smart Textiles: A Critical Review. Sensors 14 (7): 11957‑11992. https://doi.org/10.3390/s140711957
  • Sun N, Sun A (2015) Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems. Springer New York, New York, NY. URL: https://link.springer.com/10.1007/978-1-4939-2323-6
  • Talari S, Shafie-khah M, Siano P, Loia V, Tommasetti A, Catalão J (2017) A Review of Smart Cities Based on the Internet of Things Concept. Energies 10 (4). https://doi.org/10.3390/en10040421
  • Talla V, Hessar M, Kellogg B, Najafi A, Smith J, Gollakota S (2017) LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1 (3): 1‑24. https://doi.org/10.1145/3130970
  • Tromp-van Meerveld I, Weiler M (2008) Hillslope dynamics modeled with increasing complexity. Journal of Hydrology 361 (1-2): 24‑40. https://doi.org/10.1016/j.jhydrol.2008.07.019
  • Ullo SL, Sinha GR (2021) Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sensing 13 (13). https://doi.org/10.3390/rs13132585
  • Unger S, Máguas C, Pereira J, David T, Werner C (2010) The influence of precipitation pulses on soil respiration – Assessing the "Birch effect" by stable carbon isotopes. Soil Biology and Biochemistry 42 (10): 1800‑1810. https://doi.org/10.1016/j.soilbio.2010.06.019
  • Van As H, Reinders JE, De Jager PA, Van De Sanden PA, Schaafsma TJ (1994) In situ plant water balance studies using a portable NMR spectrometer. Journal of Experimental Botany 45 (1): 61‑67. https://doi.org/10.1093/jxb/45.1.61
  • Varela N, Jorge L D, Ospino A, Lizardo Zelaya NA (2020) Wireless sensor network for forest fire detection. Procedia Computer Science 175: 435‑440. https://doi.org/10.1016/j.procs.2020.07.061
  • Vargas JQ, Bendig J, Mac Arthur A, Burkart A, Julitta T, Maseyk K, Thomas R, Siegmann B, Rossini M, Celesti M, Schüttemeyer D, Kraska T, Muller O, Rascher U (2020) Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art. Remote Sensing 12 (10). https://doi.org/10.3390/rs12101624
  • Vikram R, Sinha D, De D, Das AK (2020) EEFFL: energy efficient data forwarding for forest fire detection using localization technique in wireless sensor network. Wireless Networks 26 (7): 5177‑5205. https://doi.org/10.1007/s11276-020-02393-1
  • Volkmann TM, Haberer K, Gessler A, Weiler M (2016a) High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytologist 210 (3): 839‑849. https://doi.org/10.1111/nph.13868
  • Volkmann TM, Kühnhammer K, Herbstritt B, Gessler A, Weiler M (2016b) A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, Cell & Environment 39 (9): 2055‑2063. https://doi.org/10.1111/pce.12725
  • Vorkamp K, Bossi R, Bester K, Bollmann U, Boutrup S (2014) New priority substances of the European Water Framework Directive: Biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark. Science of The Total Environment 470-471: 459‑468. https://doi.org/10.1016/j.scitotenv.2013.09.096
  • Walthert L, Ganthaler A, Mayr S, Saurer M, Waldner P, Walser M, Zweifel R, Von Arx G (2021) From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Science of The Total Environment 753 https://doi.org/10.1016/j.scitotenv.2020.141792
  • Wang PP, Jiang H, Gao L, Sen P, Kim Y, Rebeiz G, Mercier P, Hall D (2017) A 400 MHz 4.5 nW −63.8 dBm sensitivity wake-up receiver employing an active pseudo-balun envelope detector. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference. [ISBN 978-1-5090-5025-3]. https://doi.org/10.1109/ESSCIRC.2017.8094519
  • Wang RLC, Kreuzer HJ, Grunze M (1997) Molecular Conformation and Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption. The Journal of Physical Chemistry B 101 (47): 9767‑9773. https://doi.org/10.1021/jp9716952
  • Wang T, Xiong J, Xu X, Jiang M, Yuan H, Huang M, Zhuang J, Shi Y (2019) MSU-Net: Multiscale Statistical U-Net for Real-Time 3D Cardiac MRI Video Segmentation. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap PT, Khan A (Eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. 11765. [ISBN 978-3-030-32244-1 978-3-030-32245-8]. https://doi.org/10.1007/978-3-030-32245-8_68
  • Waring BG, Powers JS (2016) Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests. Environmental Research Letters 11 (10). https://doi.org/10.1088/1748-9326/11/10/105005
  • Weinman C, Gunari N, Krishnan S, Dong R, Paik M, Sohn K, Walker G, Kramer E, Fischer D, Ober C (2010) Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. Soft Matter 6 (14). https://doi.org/10.1039/b925114f
  • Werner C, Correia O (1996) Photoinhibition in cork-oak leaves under stress: influence of the bark-stripping on the chlorophyll fluorescence emission in. Trees 10 (5). https://doi.org/10.1007/s004680050035
  • Werner C, Correia O, Beyschlag W (2002) Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Functional Plant Biology 29 (8). https://doi.org/10.1071/PP01143
  • Werner C, Unger S, Pereira J, Maia R, David T, Kurz‐Besson C, David J, Máguas C (2006) Importance of short‐term dynamics in carbon isotope ratios of ecosystem respiration (δ 13 C R) in a Mediterranean oak woodland and linkage to environmental factors. New Phytologist 172 (2): 330‑346. https://doi.org/10.1111/j.1469-8137.2006.01836.x
  • Werner C, Schnyder H, Cuntz M, Keitel C, Zeeman MJ, Dawson TE, Badeck F-, Brugnoli E, Ghashghaie J, Grams TEE, Kayler ZE, Lakatos M, Lee X, Máguas C, Ogée J, Rascher KG, Siegwolf RTW, Unger S, Welker J, Wingate L, Gessler A (2012) Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9 (8): 3083‑3111. https://doi.org/10.5194/bg-9-3083-2012
  • Werner C, Fasbender L, Romek K, Yáñez-Serrano AM, Kreuzwieser J (2020) Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO2 Assimilation, Respiration, and VOC Emissions. Frontiers in Plant Science 11 https://doi.org/10.3389/fpls.2020.01242
  • Werner C, Meredith L, Ladd SN, Ingrisch J, Kübert A, Van Haren J, Bahn M, Bailey K, Bamberger I, Beyer M, Blomdahl D, Byron J, Daber E, Deleeuw J, Dippold M, Fudyma J, Gil-Loaiza J, Honeker L, Hu J, Huang J, Klüpfel T, Krechmer J, Kreuzwieser J, Kühnhammer K, Lehmann M, Meeran K, Misztal P, Ng W, Pfannerstill E, Pugliese G, Purser G, Roscioli J, Shi L, Tfaily M, Williams J (2021) Ecosystem fluxes during drought and recovery in an experimental forest. Science 374 (6574): 1514‑1518. https://doi.org/10.1126/science.abj6789
  • Williams C, Vanderhoof M, Khomik M, Ghimire B (2014) Post‐clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biology 20 (3): 992‑1007. https://doi.org/10.1111/gcb.12388
  • Windt C, Gerkema E, Van As H (2009) Most Water in the Tomato Truss Is Imported through the Xylem, Not the Phloem: A Nuclear Magnetic Resonance Flow Imaging Study. Plant Physiology 151 (2): 830‑842. https://doi.org/10.1104/pp.109.141044
  • Windt C, Soltner H, Dusschoten DV, Blümler P (2011) A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF. Journal of Magnetic Resonance 208 (1): 27‑33. https://doi.org/10.1016/j.jmr.2010.09.020
  • Windt CW, Blümler P (2015) A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. Tree Physiology 35 (4): 366‑375. https://doi.org/10.1093/treephys/tpu105
  • Woias P, Heller S, Pelz U (2018) A highly sensitive and ultra-low-power wake-up receiver for energy-autonomous embedded systems. Journal of Physics: Conference Series 1052 https://doi.org/10.1088/1742-6596/1052/1/012024
  • Wörz A, Berchtold B, Moosmann K, Prucker O, Rühe J (2012) Protein-resistant polymer surfaces. Journal of Materials Chemistry 22 (37). https://doi.org/10.1039/c2jm30820g
  • Yáñez-Serrano AM, Mahlau L, Fasbender L, Byron J, Williams J, Kreuzwieser J, Werner C (2019) Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis. Journal of Experimental Botany 70 (20): 5827‑5838. https://doi.org/10.1093/jxb/erz353
  • Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel T, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D (2020) Forest microclimate dynamics drive plant responses to warming. Science 368 (6492): 772‑775. https://doi.org/10.1126/science.aba6880
  • Zhao WL, Gentine P, Reichstein M, Zhang Y, Zhou S, Wen Y, Lin C, Li X, Qiu GY (2019) Physics‐Constrained Machine Learning of Evapotranspiration. Geophysical Research Letters 46 (24): 14496‑14507. https://doi.org/10.1029/2019GL085291
  • Zhao X, Keutel T, Baldauf M, Kanoun O (2013) Energy harvesting for a wireless‐monitoring system of overhead high‐voltage power lines. IET Generation, Transmission & Distribution 7 (2): 101‑107. https://doi.org/10.1049/iet-gtd.2012.0152