Published February 4, 2024 | Version b.1.2.6
Software Open

pyQCM-BraTaDio: A tool for visualization, data mining, and modelling of Quartz crystal microbalance with dissipation data

  • 1. Department of Materials Science and Engineering, University of California Merced, Merced, California 95344, United States of America
  • 1. Department of Materials Science and Engineering, University of California Merced, Merced, California 95344, United States of America
  • 2. Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico
  • 3. FEMTO-ST Time & Frequency department, 26 Rue de l'Épitaphe, 25000 Besançon, France
  • 4. Institute of Applied Physics, Technische Universitaet Wien, Vienna 1030, Austria
  • 5. Health Sciences Research Institute, University of California Merced, Merced, California 95344, United States of America

Description

Here, we present a Python-based software that allows for the rapid visualization, data mining, and basic model applications of quartz crystal microbalance with dissipation data. Our implementation begins with a Tkinter GUI to prompt the user for all required information, such as file name/location, selection of baseline time, and overtones for visualization (with customization capabilities). These inputs are then fed to a workflow that will use the baseline time to scrub and temporally shift data using the Pandas and NumPy libraries and carry out the plot options for visualization. The last stage consists of an interactive plot, that presents the data and allows the user to select ranges in MatPlotLib-generated panels, followed by application of data models, including Sauerbrey, thin films in liquid, among others, that are carried out with NumPy and SciPy . The implementation of this software allows for simple and expedited data visualization and analysis, in lieu of time consuming and labor-intensive spreadsheet analysis.

Files

BraTaDio_b.1.2.6.zip

Files (19.6 MB)

Name Size Download all
md5:8ef2e1ca535d2e61d9ce661770fa9e62
19.6 MB Preview Download

Additional details

Additional titles

Alternative title
BraTaDio
Alternative title
pyQCM
Subtitle
A tool for visualization, data mining, and modelling of Quartz crystal microbalance with dissipation data

Related works

Is supplement to
10.1116/1.5142762 (DOI)
10.3390/s23031348 (DOI)

Funding

U.S. National Science Foundation
NSF-CREST NSF-HRD-1547848
U.S. National Science Foundation
CAREER 2239665

Dates

Other
2024-02-04
Submitted to publisher (JOSS)

Software

Repository URL
https://github.com/b-pardi/BraTaDio
Development Status
Active

References

  • Friedt, J.-M., Choi, K.-H., Frederix, F., & Campitelli, A. (2003). Simultaneous AFM and QCM measurements: methodology validation using electrodeposition. Journal of The Electrochemical Society, 150(10), H229. IOP Publishing.
  • Borovsky, B. P., Garabedian, N. T., McAndrews, G. R., Wieser, R. J., & Burris, D. L. (2019). Integrated QCM-Microtribometry: Friction of Single-Crystal MoS₂ and Gold from μm/s to m/s. ACS Applied Materials & Interfaces, 11(43), 40961–40969. ACS Publications.
  • Bailey, L. E., Kambhampati, D., Kanazawa, K. K., Knoll, W., & Frank, C. W. (2002). Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir, 18(2), 479–489. ACS Publications.
  • Levi, M. D., Daikhin, L., Aurbach, D., & Presser, V. (2016). Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochemistry Communications, 67, 16–21. Elsevie
  • Shull, K. R., Taghon, M., & Wang, Q. (2020). Investigations of the high-frequency dynamic properties of polymeric systems with quartz crystal resonators. Biointerphases, 15(2). AIP Publishing.
  • Johannsmann, D., Langhoff, A., Leppin, C., Reviakine, I., & Maan, A. M. C. (2023). Effect of Noise on Determining Ultrathin-Film Parameters from QCM-D Data with the Viscoelastic Model. Sensors, 23(3), 1348. MDPI.
  • Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift fur Physik, 155(2), 206–222. https://doi.org/10.1007/BF01337937
  • Du, B., & Johannsmann, D. (2004). Operation of the quartz crystal microbalance in liquids: Derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir, 20(7), 2809–2812. ACS Publications.
  • Reviakine, I., Morozov, A. N., & Rossetti, F. F. (2004). Effects of finite crystal size in the quartz crystal microbalance with dissipation measurement system: Implications for data analysis. Journal of Applied Physics, 95(12), 7712–7716. American Institute of Physics.
  • McKinney, W., & others. (2010). Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56). Austin, TX.
  • Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. Nature Publishing Group. https://doi.org/10.1038/s41586-020-2649-2
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. IEEE.
  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., Van Mulbregt, P., & SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2