Published February 4, 2024
| Version b.1.2.6
Software
Open
pyQCM-BraTaDio: A tool for visualization, data mining, and modelling of Quartz crystal microbalance with dissipation data
Creators
- 1. Department of Materials Science and Engineering, University of California Merced, Merced, California 95344, United States of America
Contributors
Data collectors:
Supervisor:
- 1. Department of Materials Science and Engineering, University of California Merced, Merced, California 95344, United States of America
- 2. Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico
- 3. FEMTO-ST Time & Frequency department, 26 Rue de l'Épitaphe, 25000 Besançon, France
- 4. Institute of Applied Physics, Technische Universitaet Wien, Vienna 1030, Austria
- 5. Health Sciences Research Institute, University of California Merced, Merced, California 95344, United States of America
Description
Here, we present a Python-based software that allows for the rapid visualization, data mining, and basic model applications of quartz crystal microbalance with dissipation data. Our implementation begins with a Tkinter GUI to prompt the user for all required information, such as file name/location, selection of baseline time, and overtones for visualization (with customization capabilities). These inputs are then fed to a workflow that will use the baseline time to scrub and temporally shift data using the Pandas and NumPy libraries and carry out the plot options for visualization. The last stage consists of an interactive plot, that presents the data and allows the user to select ranges in MatPlotLib-generated panels, followed by application of data models, including Sauerbrey, thin films in liquid, among others, that are carried out with NumPy and SciPy . The implementation of this software allows for simple and expedited data visualization and analysis, in lieu of time consuming and labor-intensive spreadsheet analysis.
Files
BraTaDio_b.1.2.6.zip
Files
(19.6 MB)
Name | Size | Download all |
---|---|---|
md5:8ef2e1ca535d2e61d9ce661770fa9e62
|
19.6 MB | Preview Download |
Additional details
Additional titles
- Alternative title
- BraTaDio
- Alternative title
- pyQCM
- Subtitle
- A tool for visualization, data mining, and modelling of Quartz crystal microbalance with dissipation data
Related works
- Is supplement to
- 10.1116/1.5142762 (DOI)
- 10.3390/s23031348 (DOI)
Funding
- U.S. National Science Foundation
- NSF-CREST NSF-HRD-1547848
- U.S. National Science Foundation
- CAREER 2239665
Dates
- Other
-
2024-02-04Submitted to publisher (JOSS)
Software
- Repository URL
- https://github.com/b-pardi/BraTaDio
- Development Status
- Active
References
- Friedt, J.-M., Choi, K.-H., Frederix, F., & Campitelli, A. (2003). Simultaneous AFM and QCM measurements: methodology validation using electrodeposition. Journal of The Electrochemical Society, 150(10), H229. IOP Publishing.
- Borovsky, B. P., Garabedian, N. T., McAndrews, G. R., Wieser, R. J., & Burris, D. L. (2019). Integrated QCM-Microtribometry: Friction of Single-Crystal MoS₂ and Gold from μm/s to m/s. ACS Applied Materials & Interfaces, 11(43), 40961–40969. ACS Publications.
- Bailey, L. E., Kambhampati, D., Kanazawa, K. K., Knoll, W., & Frank, C. W. (2002). Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir, 18(2), 479–489. ACS Publications.
- Levi, M. D., Daikhin, L., Aurbach, D., & Presser, V. (2016). Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochemistry Communications, 67, 16–21. Elsevie
- Shull, K. R., Taghon, M., & Wang, Q. (2020). Investigations of the high-frequency dynamic properties of polymeric systems with quartz crystal resonators. Biointerphases, 15(2). AIP Publishing.
- Johannsmann, D., Langhoff, A., Leppin, C., Reviakine, I., & Maan, A. M. C. (2023). Effect of Noise on Determining Ultrathin-Film Parameters from QCM-D Data with the Viscoelastic Model. Sensors, 23(3), 1348. MDPI.
- Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift fur Physik, 155(2), 206–222. https://doi.org/10.1007/BF01337937
- Du, B., & Johannsmann, D. (2004). Operation of the quartz crystal microbalance in liquids: Derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir, 20(7), 2809–2812. ACS Publications.
- Reviakine, I., Morozov, A. N., & Rossetti, F. F. (2004). Effects of finite crystal size in the quartz crystal microbalance with dissipation measurement system: Implications for data analysis. Journal of Applied Physics, 95(12), 7712–7716. American Institute of Physics.
- McKinney, W., & others. (2010). Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56). Austin, TX.
- Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. Nature Publishing Group. https://doi.org/10.1038/s41586-020-2649-2
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. IEEE.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., Van Mulbregt, P., & SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2