Published May 31, 2018 | Version v1
Journal article Open

TEMPORAL INTERVAL VALUED BI FUZZY SUBGROUP OVER CERTAINNORMS

  • 1. Professor, Department of Mathematics, PRIST University, Tanjore, Tamilnadu
  • 2. Research Scholar, Department of Mathematics, PRIST University, Tanjore, Tamilnadu

Description

The notion of temporal bi fuzzy subgroups (TBFS) is introduced, and related properties are investigated. Characterizations of a temporalbi fuzzy subgroup (TBFG) are established, and how the images or inverse images of temproal bi fuzzy subgroups become temporal bi fuzzy subgroups is studied.

Files

202.pdf

Files (624.1 kB)

Name Size Download all
md5:d2b936fbf839d6faa965f6bb334a1ef4
624.1 kB Preview Download

Additional details

References

  • 1. S. Abdullah, M. Aslam and K. Ullah, Bipolar fuzzy soft sets and its applications in decision making problem, J. Intell. Fuzzy Syst. 27:2, 729-742 (2014). 2. S. Abdullah, M. Aslam and K. Hila, A new generalization of fuzzy bi-ideals in semigroups and its Applications in fuzzy finite state machines, Multiple Valued Logic and Soft Computing, 27:2, 599-623 (2015). 3. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177, 2726-2735 (2007). 4. M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57, 1547-1553 (2009). 5. A.O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (3), 592-601 (2011). 6. K. T. Atanassov, "Temporal intuitionistic fuzzy sets", Comptes Rendus Acad. Bulgare Sci., 1991, 7, 5-7. 7. N. Cagman and S. Engino˘glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207, 848-855 (2010). 8. N. Cagman, F. C¸ ıtak and H. Aktas¸, Soft int-groups and its applications to group theory, Neural Comput. Appl. 21, 151-158 (2012). 9. F. Feng, X.Y. Liu, V. Leoreanu-Fotea, Y.B. Jun, Soft sets andsoft rough sets, Inform. Sci. 181 (6), 1125-1137 (2011). 10. P.K.Maji, R. Biswas and A.R. Roy, Soft set theory, Comput. Math. Appl. 45, 555-562 (2003). 11. P.K. Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44, 1077-1083 (2002). 12. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37, 19-31(1999). 13. A. Rosenfeld, Fuzzy groups, J.M. Anal. and Appli. 35,512 - 517 (1971). 14. Shery Fernandez, Ph.D. thesis "A study of fuzzy g-modules" April 2004. 15. L.A. Zadeh, Fuzzy sets, Information Control 8, 338 - 353 (1965). 16. J. Zhan, N. Cagman, A. SezginSezer, Applications of soft union sets to hemirings via SU-h-ideals, J. Intell. Fuzzy Syst.26, 1363-1370 (2014).