Published June 29, 2024 | Version v1
Dataset Open

MUSES Leaf Area Index (LAI) 8-Day Global 500m SIN Grid in 2023

Creators

Description

The MUltiscale Satellite remotE Sensing (MUSES) product suite includes products with different spatial and temporal resolutions for parameters such as Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of Vegetation (NIRv), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fractional Vegetation Coverage (FVC), Gross Primary Production (GPP), Net Primary Production (NPP). For more information about the MUSES products, please refer to this website (https://muses.bnu.edu.cn/).

The MUSES LAI product at 500m spatial resolution and 8-day temporal resolution is provided on a Sinusoidal grid and spans from 2000 to 2023 (continuously updated). It was generated from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product using general regression neural networks (GRNNs)  (Xiao et al., 2014; Xiao et al., 2016). The MUSES LAI product is spatially complete and temporally continuous.

This dataset is the MUSES LAI product in 2023. Please click here to download the MUSES LAI product in 2022.

Dataset Characteristics:

  • Spatial Coverage: Global
  • Temporal Coverage: 2023
  • Spatial Resolution: 500m
  • Temporal Resolution: 8 days
  • Projection: Sinusoidal
  • Data Format: HDF
  • Scale: 0.01
  • Valid Range: 0 – 1000

Citation (Please cite this paper whenever these data are used):

  1. Xiao Zhiqiang, et al. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223.
  2. Xiao Zhiqiang, et al. (2016). Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 54, 5301-5318.
  3. Xiao Zhiqiang, Jinling Song, Hua Yang, Rui Sun and Juan Li. (2022). A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43(4), 1199-1225.
  4. Xiao Zhiqiang, et al. (2017). Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 246, 218-230.

If you have any questions, please contact Prof. Zhiqiang Xiao (zhqxiao@bnu.edu.cn).

Files

Files (29.2 GB)

Name Size Download all
md5:1b8fc211e1ddc106a52bd70b562ec4ee
604.8 MB Download
md5:80355ac438be0ef1a1be5da749a3f7f1
604.6 MB Download
md5:9f72ca861f7da9480816690e65047fa2
604.5 MB Download
md5:1a92dee0f5ea979fc2c3c3672508a67c
604.9 MB Download
md5:d9e4e92c525a76774eedb9f8c88ea12c
606.3 MB Download
md5:f928db47e4f216692a68b987c50eae3e
605.4 MB Download
md5:b2f1bc887f52f515faa3fa4fbf3e209d
604.3 MB Download
md5:9616f03b0d01d2e3c9de375ca3060a71
603.6 MB Download
md5:2ed20b99dd65fd5c340ed4afe55edc7e
603.0 MB Download
md5:f7db910e271f207c3eb2df37e9aa0655
602.9 MB Download
md5:f0032fdf534c053b6cb5947e48877fbe
603.8 MB Download
md5:f0a6a909b26b7df820cc1b460c460408
607.1 MB Download
md5:e8d72aa03f6d12068a246fe7eb01475d
614.0 MB Download
md5:7401bece61b42ffa069903149a8761de
622.4 MB Download
md5:a08407f1fdd059dee2d329934a4e7445
632.1 MB Download
md5:c4bc661fbb9f45c2d676949732923df8
641.1 MB Download
md5:bef4a0f0a0f9741dbda836f6bef3d593
648.9 MB Download
md5:4ba6cd145bc6528b2a30287100169ed2
655.5 MB Download
md5:c9c7d48d42645f7e9c57cb3a100539d0
660.6 MB Download
md5:82053d63d0886acaaf52b2f3a410cafb
663.9 MB Download
md5:34f42edbfab697eb06441e35978eefa3
666.8 MB Download
md5:8c9d7ec3f83a2ac1d098e902c1f312ce
669.4 MB Download
md5:860d7b5806818081956e9e72d08fbd3c
670.5 MB Download
md5:97542cc6290f63cb2aeb2737a87088f3
671.0 MB Download
md5:dc656b604a35c13a5593bb872d7d5731
671.2 MB Download
md5:d1ab3b8eed102f2196e329f07f251a45
671.3 MB Download
md5:896ac9beb9662a12fd3d1a882ca055f2
671.5 MB Download
md5:42ee28cf1734a35f1b01d2c10c053fe9
671.2 MB Download
md5:2019edd068374a8886ed4c5a623408c2
669.4 MB Download
md5:86430d0afcb828f323477339d2cf6d15
666.9 MB Download
md5:6dcd916dad0543bb33a03b34eff50fa4
663.5 MB Download
md5:1a764b8aa5938924f1c0a846075f41fa
659.0 MB Download
md5:4544b39d67f7aaa5a68d752564644516
653.8 MB Download
md5:b433c3b70c64a7d5abfa65ba7195bbc9
648.7 MB Download
md5:e5bea6caeb2cbb350abbd4d458a14b51
643.5 MB Download
md5:1e4051e03c47757a364b813f575dd8cb
639.3 MB Download
md5:af0974537be4f2bf6e5d246a6225b478
635.6 MB Download
md5:d1317c24515b5d88d521e0c4894e82d4
633.9 MB Download
md5:2ee9d689062121faa9894099a589fce1
631.7 MB Download
md5:a0a62ec0886f337cb5655944080a9bd3
631.3 MB Download
md5:bbdbe6120744bea20b2a056acdb24c41
627.8 MB Download
md5:1475e0668e671a1886feae4afc81b0d7
622.8 MB Download
md5:3c1a8df31d34dc3a9dc4dd9e8a234408
618.2 MB Download
md5:22f9853d9a43c848b70f8108860bed02
614.1 MB Download
md5:9c66527adb221016de4707b897b294b2
611.4 MB Download
md5:7075af338fe2a7ac080eb240e451c68c
609.3 MB Download