Published June 25, 2024 | Version v2
Dataset Open

MUSES Leaf Area Index (LAI) Derived from MODIS Data Monthly Global 0.05º Geographic Grid Since 2000

Creators

Description

The MUltiscale Satellite remotE Sensing (MUSES) product suite includes products with different spatial and temporal resolutions for parameters such as Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of Vegetation (NIRv), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fractional Vegetation Coverage (FVC), Gross Primary Production (GPP), Net Primary Production (NPP). For more information about the MUSES products, please refer to this website (https://muses.bnu.edu.cn/).

This dataset is the MUSES global LAI product at 0.05º spatial resolution and monthly temporal resolution. The MUSES LAI product was generated from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product using general regression neural networks (GRNNs) (Xiao et al., 2014; Xiao et al., 2016). It is provided on Geographic grid and spans from 2000 to 2019 (continuously updated). The MUSES LAI product is spatially complete and temporally continuous.

Dataset Characteristics:

  • Spatial Coverage: 180º W – 180º E, 90º S – 90º N
  • Temporal Coverage: 2000 – 2019
  • Spatial Resolution: 0.05º (approximately 5 km)
  • Temporal Resolution: 1 month
  • Projection: Geographic
  • Data Format: HDF
  • Scale: 0.01
  • Valid Range: 0 – 1000

Citation (Please cite this paper whenever these data are used):

  1. Xiao Zhiqiang, Jinling Song, Hua Yang, Rui Sun and Juan Li. (2022). A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43(4), 1199-1225.
  2. Xiao Zhiqiang, et al. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223.
  3. Xiao Zhiqiang, et al. (2016). Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 54, 5301-5318.
  4. Xiao Zhiqiang, et al. (2017). Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 246, 218-230.

If you have any questions, please contact Prof. Zhiqiang Xiao (zhqxiao@bnu.edu.cn).

Files

Files (2.0 GB)

Name Size Download all
md5:45592a7e98a6e87539b12ba6dedeabaf
83.8 MB Download
md5:301f1bf9a5127c092b6a7cef1c32a3ec
83.6 MB Download
md5:564484e2f3ae4163c75a60aa21b67763
83.5 MB Download
md5:f3c16b59d5bbe7a33e2e3b97521760bc
83.5 MB Download
md5:63bb8e7cc6ef03197c7105f195824316
83.7 MB Download
md5:803a6e66046ea1a40906e1ce6359d0d9
83.7 MB Download
md5:645ee8a2367338d7a89ad422bc602966
83.8 MB Download
md5:e4430a616eb00635ce6fa9d8ae20af36
83.8 MB Download
md5:75aff92e5dbf1ec2f7420eeaf4dc4908
83.5 MB Download
md5:2c0320ad73ce2ec95752967ae9360b25
83.7 MB Download
md5:d241931aebb73e64a0ad0106541d0d82
84.1 MB Download
md5:2511505fdf988f8e5ceba25b4d8e8f1b
84.1 MB Download
md5:92448b18e524ed46d47ce460001b79c5
84.0 MB Download
md5:e0150fc44f35be61b7c8c598f1037abc
84.1 MB Download
md5:51d0e04e7c8066d43436e1727745223f
84.1 MB Download
md5:0e4ac600e9c887a8c587b6ae9b54e0c8
84.3 MB Download
md5:36d7ac9b674a822eb408971d694004c7
84.5 MB Download
md5:cbb3426587d49f4148ad8925791a6bab
84.3 MB Download
md5:b980ada0dd78109b3bdfc322d5bd9752
84.2 MB Download
md5:5abd8809a8aa792f3589d6d79294f84a
84.3 MB Download
md5:057ccf5440e89ca50579711b07726452
84.5 MB Download
md5:8f8d5f7430f8b65614ff8569adb0f135
84.4 MB Download
md5:500c9a0cb66c20772c0a3d050671232e
84.7 MB Download
md5:9755336166acfcb7c491e5ad451b3c51
84.9 MB Download