Published April 30, 2018
| Version v1
Journal article
Restricted
Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty
Creators
Description
Jordi Paps, Peter W.H. Holland (2018): Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nature Communications 9 (1730): 1-8, DOI: 10.1038/s41467-018-04136-5
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:5F16FFFAE85A2D59FFA3227251475013
Related works
- Has part
- Figure: 10.5281/zenodo.1242577 (DOI)
- Figure: 10.5281/zenodo.1242575 (DOI)
- Dataset: http://table.plazi.org/id/7FF9661CE8592D5AFFDC22E153C550BA (URL)
References
- 1. Holland, P. W. H. The Animal Kingdom. (Oxford University Press, 2011)
- 2. Torruella, G. et al. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr. Biol. 25, 2404-2410 (2015).
- 3. Richter, D. J. & King, N. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47, 509-537 (2013).
- 4. Suga, H. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4, 2325 (2013).
- 5. Moyers, B. A. & Zhang, J. Phylostratigraphic bias creates spurious patterns of genome evolution. Mol. Biol. Evol. 32, 258-267 (2015).
- 6. Domazet-Loso, T., Brajkovic, J. & Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23, 533-539 (2007).
- 7. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
- 8. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584 (2002).
- 9. Kuzniar, A., van Ham, R. C., Pongor, S. & Leunissen, J. A. The quest for orthologs: finding the corresponding gene across genomes. Trends Genet. 24, 539-551 (2008).
- 10. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212 (2015).
- 11. Zhong, Y.-F. & Holland, P. W. H. HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol. Dev. 13, 567-568 (2011).
- 12. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178-2189 (2003).
- 13. Dunwell, T. L., Paps, J. & Holland, P. W. H. Novel and divergent genes in the evolution of placental mammals. Proc. R. Soc. B Biol. Sci. 284, 20171357 (2017).
- 14. King, N. & Rokas, A. Embracing uncertainty in reconstructing early animal evolution. Curr. Biol. 27, R1081-R1088 (2017).
- 15. Jekely, G., Paps, J. & Nielsen, C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo 6, 1 (2015).
- 16. Mi, H., Poudel, S., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 44, D336-D342 (2016).
- 17. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-788 (2008).
- 18. Degnan, B. M. et al. The demosponge Amphimedon queenslandica: reconstructing the ancestral metazoan genome and deciphering the origin of animal multicellularity. Cold Spring Harb. Protoc. 2 0 0 8, pdb.emo108 (2008).
- 19. Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720-726 (2010).
- 20. Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2, e1031 (2007).
- 21. Larroux, C. et al. The NK homeobox gene cluster predates the origin of Hox genes. Curr. Biol. 17, 706-710 (2007).
- 22. Simionato, E. et al. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol. Biol. 7, 33 (2007).
- 23. Richards, G. S. et al. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr. Biol. 18, 1156-1161 (2008).
- 24. Fortunato, S. A. V., Vervoort, M., Adamski, M. & Adamska, M. Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 7, 23 (2016).
- 25. Larroux, C. et al. Genesis and expansion of metazoan transcription factor gene classes. Mol. Biol. Evol. 25, 980-996 (2008).
- 26. Degnan, B. M., Vervoort, M., Larroux, C. & Richards, G. S. Early evolution of metazoan transcription factors. Curr. Opin. Genet. Dev. 19, 591-599 (2009).
- 27. Fortunato, S. A. V., Adamski, M. & Adamska, M. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar. Genom. 24, 121-129 (2015).
- Fortunato, S. A. V., Adamski, M. & Adamska, M. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar. Genom. 24, 121-129 (2015).
- 28. de Mendoza, A. et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl Acad. Sci. USA 110, E4858-E4866 (2013).
- de Mendoza, A. et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl Acad. Sci. USA 110, E4858-E4866 (2013).
- 29. Sebe-Pedros, A. & de Mendoza, A. in Evolutionary Transitions to Multicellular Life, Advances in Marine Genomics Vol. 2 (eds Ruiz-Trillo, I. & Nedelcu, A. M.) 379-394 (Springer, Dordrecht, 2015).
- Sebe-Pedros, A. & de Mendoza, A. in Evolutionary Transitions to Multicellular Life, Advances in Marine Genomics Vol. 2 (eds Ruiz-Trillo, I. & Nedelcu, A. M.) 379-394 (Springer, Dordrecht, 2015).
- 30. Grau-Bove, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6, e26036 (2017).
- Grau-Bove, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6, e26036 (2017).
- 31. Mendez, R. et al. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21, 5627-5637 (2002).
- Mendez, R. et al. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21, 5627-5637 (2002).
- 32. Ivancevic, A. M., Walsh, A. M., Kortschak, R. D. & Adelson, D. L. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 35, 1071-1082 (2013).
- Ivancevic, A. M., Walsh, A. M., Kortschak, R. D. & Adelson, D. L. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 35, 1071-1082 (2013).
- 33. Leys, S. P., Nichols, S. A. & Adams, E. D. Epithelia and integration in sponges. Integr. Comp. Biol. 49, 167-177 (2009).
- Leys, S. P., Nichols, S. A. & Adams, E. D. Epithelia and integration in sponges. Integr. Comp. Biol. 49, 167-177 (2009).
- 34. Schievella, A. R., Chen, J. H., Graham, J. R. & Lin, L. L. MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J. Biol. Chem. 272, 12069-12075 (1997).
- Schievella, A. R., Chen, J. H., Graham, J. R. & Lin, L. L. MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J. Biol. Chem. 272, 12069-12075 (1997).
- 35. Iwasaki, K. & Toyonaga, R. The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J. 19, 4806-4816 (2000).
- Iwasaki, K. & Toyonaga, R. The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J. 19, 4806-4816 (2000).
- 36. Callebaut, I., Jean, De, Gunzburg, Goud, B. & Mornon, J. P. RUN domains: a new family of domains involved in Ras-like GTPase signaling. Trends Biochem. Sci. 26, 79-83 (2001).
- Callebaut, I., Jean, De, Gunzburg, Goud, B. & Mornon, J. P. RUN domains: a new family of domains involved in Ras-like GTPase signaling. Trends Biochem. Sci. 26, 79-83 (2001).
- 37. Krishnan, A. & Schioth, H. B. The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J. Exp. Biol. 218, 562-571 (2015).
- Krishnan, A. & Schioth, H. B. The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J. Exp. Biol. 218, 562-571 (2015).
- 38. Kabachinski, G., Kielar-Grevstad, D. M., Zhang, X., James, D. J. & Martin, T. F. J. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol. Biol. Cell 27, 654-668 (2016).
- Kabachinski, G., Kielar-Grevstad, D. M., Zhang, X., James, D. J. & Martin, T. F. J. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol. Biol. Cell 27, 654-668 (2016).
- 39. Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).
- Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).
- 40. Pisani, D. et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc. Natl Acad. Sci. USA 112, 201518127 (2015).
- Pisani, D. et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc. Natl Acad. Sci. USA 112, 201518127 (2015).
- 41. Sebe-Pedro, A. et al. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165, 1224-1237 (2016).
- Sebe-Pedro, A. et al. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165, 1224-1237 (2016).
- 42. Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157-2167 (2002).
- Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157-2167 (2002).
- 43. Satou, Y. & Satoh, N. Genome wide surveys of developmentally relevant genes in Ciona intestinalis. Dev. Genes. Evol. 213, 211-212 (2003).
- Satou, Y. & Satoh, N. Genome wide surveys of developmentally relevant genes in Ciona intestinalis. Dev. Genes. Evol. 213, 211-212 (2003).
- 44. Tsai, I. J. et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 57-63 (2013).
- Tsai, I. J. et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 57-63 (2013).
- 45. Holland, P. W. H., Marletaz, F., Maeso, I., Dunwell, T. L. & Paps, J. New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philos. Trans. R. Soc. B Biol. Sci. 372, 20150480 (2017).
- Holland, P. W. H., Marletaz, F., Maeso, I., Dunwell, T. L. & Paps, J. New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philos. Trans. R. Soc. B Biol. Sci. 372, 20150480 (2017).
- 46. Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32-D37 (2014).
- Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32-D37 (2014).
- 47. Camacho, C. et al. BLAST+: architecture and applications. BMC. Bioinform. 10, 421 (2009).
- Camacho, C. et al. BLAST+: architecture and applications. BMC. Bioinform. 10, 421 (2009).
- 48. Edvardsen, R. B. et al. Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr. Biol. 15, R12-R13 (2005).
- Edvardsen, R. B. et al. Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr. Biol. 15, R12-R13 (2005).