Published May 8, 2024 | Version v1
Journal article Open

Fossil caries in a Pliocene rodent with a plausible instance of in situ preservation of bacterial remains

Description

Czernielewski, Michał, Bącal, Paweł, Błażejowski, Błażej (2024): Fossil caries in a Pliocene rodent with a plausible instance of in situ preservation of bacterial remains. Acta Palaeontologica Polonica 69 (2): 217-225, DOI: 10.4202/app.01125.2023, URL: http://dx.doi.org/10.4202/app.01125.2023

Files

source.pdf

Files (1.1 MB)

Name Size Download all
md5:b368a8ad08eb3786abf7eeb8af92be61
1.1 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:B368FFADFFEBFF86FFF7FFB8FF92BE61

Related works

References

  • Aas, J.A., Griffen, A.L., Dardis, S.R., Lee, A.M., Olsen, I., Dewhirst, F.E., Leys, E.J., and Paster, B.J. 2008. Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology 46: 1407-1417.
  • Adler, C.J., Browne, G.V., Sukumar, S., and Hughes, T. 2017. Evolution of the oral microbiome and dental caries. Current Oral Health Reports 4: 264-269.
  • Adler, C.J., Dobney, K., Weyrich, L.S., Kaidonis, J., Walker, A.W., Haak, W., Bradshaw, C.J.A., Townsend, G., Soltysiak, A., Alt, K.W., Parkhill, J., and Cooper, A. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Indus- trial revolutions. Nature Genetics 45: 450-455.
  • Ajdic, D, McShan, W.M., McLaughlin, R.E., Savic, G., Chang, J., Carson, M.B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y., Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B.A., and Ferretti, J.J. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proceedings of the National Academy of Sciences USA 99: 14434-14439.
  • Bieber, C. and Ruf, T. 2009. Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96: 165-171.
  • Blazejowski, B., Binkowski, M., Bitner, M.A., and Gieszcz, P. 2011. X-ray microtomography (XMT) of fossil brachiopod shell interiors for tax- onomy. Acta Palaeontologica Polonica 56: 439-440.
  • Bowen, W.H. 2013. Rodent model in caries research. Odontology 101: 9-14.
  • Burne, R. 1998. Oral Streptococci: products of their environment. Journal of Dental Research 77: 445-452.
  • Cornejo, O.E., Lefebure, T., Pavinski Bitar, P.D., Lang, P., Richards, V.P., Eilertson, K., Do, T., Beighton, D., Zeng, L., Ahn, S.-J., Burne, R.A., Siepel, A., Bustamante, C.D., and Stanhope, M.J. 2013. Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Molecular Biology and Evolution 30: 881-893.
  • Daams, R. and de Bruijn, H. 1994. A classification of the Gliridae (Rodentia) on the basis of dental morphology. Hystrix (n.s.) 6: 3-50.
  • Daoud,A. 1993. Evolution of Gliridae (Rodentia, Mammalia) in the Pliocene and Quaternary of Poland. Acta Zoologica Cracoviensia 36: 199-231.
  • Fakhruddin, K.S., Ngo, H.C., and Samaranayake, L.P. 2019. Cariogenic microbiome and microbiota of the early primary dentition: a contem- porary overview. Oral Diseases 25: 982-995.
  • Figueirido, B., Perez-Ramos, A., Schubert, B.W., Serrano, F., Farrell, A.B., Pastor, F.J., Nevesm, A.A., and Romero, A. 2017. Dental caries in the fossil record: a window to the evolution of dietary plasticity in an extinct bear. Scientific Reports 7: 17813.
  • Fostowicz-Frelik, L., and Frelik, G. 2010. Earliest record of dental pathogen discovered in a North American Eocene rabbit. Palaios 25: 818-822.
  • Freudenthal, M. 2004. Gliridae (Rodentia, Mammalia) from the Eocene and Oligocene of the Sierra Palomera (Teruel, Spain). Treballs del Museu de Geologia de Barcelona 12: 97-173.
  • Freudenthal, M. and Martin-Suarez, E. 2013. New ideas on the systematics of Gliridae (Rodentia, Mammalia). Spanish Journal of Paleontology 28: 239-252.
  • Furseth Klinge, R., Dean, M.C., Risnes, S., Erambert, M., and Gunnaes,A.E. 2009. Preserved microstructure and mineral distribution in tooth and periodontal tissues in early fossil hominin material from Koobi Fora, Kenya. In: T. Koppe, G. Meyer, and K.W. Alt (eds.), Comparative Dental Morphology. Frontiers of Oral Biology 13: 30-35.
  • Fuss, J., Uhlig, G., and Bohme, M. 2018. Earliest evidence of caries lesions in hominids reveal sugar-rich diet for a Middle Miocene dryopithecine from Europe. PloS One 13: e0203307
  • Gajdacs, M. and Urban, E. 2020. The pathogenic role of Actinomyces spp. and related organisms in genitourinary infections: discoveries in the new, modern diagnostic era. Antibiotics 2020 (9): 524.
  • Goldberg, M., Kulkarni, A.B., Young, M., and Boskey, A. 2011. Dentin: structure, composition and mineralization. Frontiers in Bioscience (Elite Edition) 2011: 711-735.
  • Grine, F.E., Gwinnett, A.J., and Oaks, J.H. 1990. Early hominid dental pathology: interproximal caries in 1.5 million-year-old Paranthropus robustus from Swartkrans. Archives of Oral Biology 35: 381-386.
  • Hershkovitz, I., Kelly, J., Latimer, B., Rothschild, B.M., Simpson, S., Po- lak, J., and Rosenberg, M. 1997. Oral bacteria in Miocene Sivapithecus. Journal of Human Evolution 33: 507-512.
  • Hoelzl, F., Smith, S., Cornils, J.S., Aydinonat, D., Bieber, C., and Ruf, T. 2016. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Scientific Reports 6: 36856.
  • Humphrey, L.T., De Groote, I., Morales, J., Barton, N., Collcutt, S., Bronk Ramsey, C., and Bouzouggar, A. 2014. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proceedings of the National Academy of Sciences USA 111: 954-959.
  • Jurczyszyn, M. 2018. Food and foraging preferences of the edible dormouse Glis glis at two sites in Poland. Folia Zoologica 67: 83-90.
  • Kahler, B., Moule, A., and Stenzel, D. 2000. Bacterial contamination of cracks in symptomatic vital teeth. Australian Endodontic Journal 26: 115-118.
  • Kear, B.P. 2001. Dental caries in an Early Cretaceous ichthyosaur. Alcheringa 25: 987-390.
  • Kemp, A. 2003. Dental and skeletal pathology in lungfish jaws and tooth plates. Alcheringa 27: 155-170.
  • Klinke, T., Guggenheim, B., Klimm, W., and Thurnheer, T. 2011. Dental caries in rats associated with Candida albican s. Caries Research 45: 100-106.
  • Kononen, E. and Wade, W.G. 2015. Actinomyces and related organisms in human infections. Clinical Microbiology Reviews 28: 419-442.
  • Larsen, C.S., Knusel, C.J., Haddow, S.D., Pilloud, M.A., Milella, M., Sad- vari, J.W., Pearson, J., Ruff, C.B., Garofalo, E.M., Bocaege, E., Betz, B.J., Dori, I., and Glencross, B. 2019. Bioarchaeology of Neolithic Catalhoyuk reveals fundamental transitions in health, mobility, and lifestyle in early farmers. Proceedings of the National Academy of Sciences USA 116: 12615-12623.
  • Lemaitre, J.-F., Ronget, V., Tidiere, M., Allaine, D., Berger, V., Cohas, A., Colchero, F., Conde, D.A., Garratt, M., Liker, A., Marais, G.A.B., Scheuerlein, A., Szekely, T., and Gaillard, J.M. 2020. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences USA 117: 8546- 8553.
  • Love, R.M. and Jenkinson, H.F. 2002. Invasion of dentinal tubules by oral bacteria. Critical Reviews in Oral Biology and Medicine 13: 171-183.
  • Lu, X., Costeur, L., Hugueney, M., and Maridet, O. 2021. New data on early Oligocene dormice (Rodentia, Gliridae) from southern Europe: phylogeny and diversification of the family. Journal of Systematic Palaeontology 19: 169-189.
  • Mayer, W.V. and Bernick, S. 1963. Effect of hibernation on tooth structure and dental caries. In: R.F. Sognnaes (ed.), Mechanisms of Hard Tissue Destruction, 285-296. Association for the Advancement of Science, Washington D. C.
  • Michelich, V.J., Schuster, G.S., and Pashley, D.H. 1980. Bacterial penetra- tion of human dentin in vitro. Journal of Dental Research 59: 1398- 1403.
  • Moncunill-Sole, B., Isidro, A., Blanco, A., Angelone, C., Rossner, G., and Jordana, X. 2019. The most ancient evidence of a diseased lagomorph: Infectious paleopathology in a tibiofibular bone (Middle Miocene, Germany). Comptes Rendus Palevol 18: 1011-1023.
  • Neefs, J.-M., Van de Peer, Y., Hendriks, L., and De Wachter, R. 1990. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research 18, Supplement: 2237-2317.
  • Ortega-Cuadros, M., Tofino-Rivera,A.-P., Merini, L.J., and Martinez-Pabon, M.C. 2018. Antimicrobial activity of Cymbopogon citratus (Poaceae) on Streptococcus mutans biofilm and its cytotoxic effects. Revista de Biologia Tropical 66: 1519-1529.
  • Poinar, G., Jr. 2014. Evolutionary history of terrestrial pathogens and en- doparasites as revealed in fossils and subfossils. Advances in Biology 2014: 181353.
  • Preus, H., Marvik, O.J., Selvig, K.A., and Bennike, P. 2011. Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. Journal of Archaeological Science 38: 1827-1831.
  • Raina, V., Nayak, T., Ray, L., Kumari, K., and Suar, M. 2019. A polyphasic taxonomic approach for designation and description of novel microbial species. In: S. Das and H.R. Dash (eds.), Microbial Diversity in the Genomic Era, 137-152. Academic Press, London.
  • Reisz, R.R., Scott, D.M., Pynn, B.R., and Modesto, S.P. 2011. Osteomyeli- tis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance. Naturwissenschaften 98: 551-555.
  • Richardson, R.L., Fisher, A.K., and Folk, G.E., Jr. 1961. The dental tissues of wild and laboratory-raised hibernating and non-hibernating 13-lined ground squirrels. Journal of Dental Research 40: 1029-1035.
  • Ricucci, D., Siqueira, J.F., Jr., Loghin, S., and Berman, L.H. 2015. The cracked tooth: histopathologic and histobacteriologic aspects. Journal of Endodontics 41: 343-352.
  • Sala Burgos, N., Cuevaz Gonzalez, J., and Lopez Martinez, N. 2007. Es- tudio paleopatologico de una hemimandibula de Tethytragus (Artiodactyla, Mammalia) del Mioceno Medio de Somosaguas (Pozuelo de Alarcon, Madrid). Coloquios de Paleontologia 57: 7-14.
  • Selig, K.R. and Silcox, M.T. 2021. The largest and earliest known sample of dental caries in an extinct mammal (Mammalia, Euarchonta, Mi- crosyops latidens) and its ecological implications. Scientific Reports 11: 15920.
  • Stefaniak, K., Ratajczak, U., Kotowski, A., Kozlowska, M., and Mackiewicz, P. 2020. Polish Pliocene and Quaternary deer and their biochro- nological implications. Quaternary International 546: 64-83.
  • Storch, G. and Seiffert, C. 2007. Extraordinarily preserved specimen of the oldest known glirid from the Middle Eocene of Messel (Rodentia). Journal of Vertebrate Paleontology 27: 189-194.
  • Striczky, L. and Pazonyi, P. 2014. Taxonomic study of the dormice (Gliridae, Mammalia) fauna from the late Early Pleistocene Somssich Hill 2 locality (Villany Hills, South Hungary) and its palaeoecological implications. Fragmenta Palaeontologica Hungarica 31: 51-81.
  • Sulimski, A. 1962. O nowym znalezisku kopalnej fauny kregowcow w okolicy Dzialoszyna. Przeglad Geologiczny 10: 291-223.
  • Surmik, D, Szczygielski, T., Janiszewska, K., and Rothschild, B.M. 2018. Tuberculosis-like respiratory infection in 245-million-year-old marine reptile suggested by bone pathologies. Royal Society Open Science 5: 180225.
  • Tillier, A.M., Arensburg, B., Rak, Y., and Vandermeersch, B. 1995. Middle Palaeolithic dental caries: new evidence from Kebara (Mount Carmel, Israel). Journal of Human Evolution 29: 189-192.
  • Towle, I., Irish, J.D., De Groote, I., Fernee, C., and Loch, C. 2021. Dental caries in South African fossil hominins. South African Journal of Science 117: 8705.
  • Trinkaus, E., Smith, R.J., and Lebel, S. 2000. Dental caries in the Aubesier 5 Neandertal primary molar. Journal of Archaeological Science 27: 1017-1021.
  • Ushatinskaya, G.T. 2009. Preservation of living organic structures in uni- cellular and multicellular organisms in the fossil state. Paleontological Journal 43: 928-939.
  • Watanabe, I.-S., Ogawa, K., Cury, D.P., Dias, F.J., Consentino Kronka Sos- thenes, M., Mardegan Issa, J.P., and Iyomasa M.M. 2013. Fine structure of bacterial adhesion to the epithelial cell membranes of the filiform papillae of tongue and palatine mucosa of rodents: a morphometric, TEM, and HRSEM study. Microscopy Research and Technique 76: 1226-1233.
  • Westall, F. 1999. The nature of fossil bacteria: a guide to the search for extraterrestrial life. Journal of Geophysical Research 104: 437-451.
  • Weyrich, L.S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., Morris, A.G., Alt, K.W., Caramelli, D., Dresely, V., Farrell, M., Farrer, A.G., Francken, M., Gully, N., Haak, W., Hardy, K., Harvati, K., Held, P., Holmes, E.C., Kaidonis, J., Lalueza-Fox, C., de la Rasilla, M., Ro- sas, A., Semal, P., Soltysiak, A., Townsend, G., Usai, D., Wahl, J., Hu- son, D.H., Dobney, K., and Cooper, A. 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544: 357-361.
  • Wolff, E.D.S., Salisbury, S.W., Horner, J.R., and Varricchio, D.J. 2009. Common avian infection plagued the tyrant dinosaurs. PLoS ONE 4 (9): e7288.
  • You, M.S., Lee, S.Y., and Ma, D.S. 2017. In vitro antimicrobial activity of different mouthwashes available in Korea. Journal of Korean Academy of Oral Health 41: 188-193.
  • Zapalski, M.K., Kise, H., Dohnalik, M., Yoshida, R., Izumi, T., and Reimer, J.D. 2021. Hexacoral-crinoid associations from the modern mesophotic zone: ecological analogues for Palaeozoic associations. Palaeo- geography, Palaeoclimatology, Palaeoecology 572: 110419.