Published June 20, 2024 | Version v1
Dataset Open

Collected laboratory data for: Theoretical basis and analyses of temperature responses of water-saturated rocks to rapid changes in confining pressure

  • 1. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
  • 2. University of Mississippi, Oxford, MS, USA
  • 3. Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan

Description

In this data submission, there are three collected laboratory data sets used in the submitted manuscript: Theoretical basis and analyses of temperature responses of water-saturated rocks to rapid changes in confining pressure. The first data set includes the thermophysical properties of the main rock-forming minerals in the crust and water. The second data set includes the poroelastic constants for compact and porous rocks. The third data set includes the chemical composition (Oxides) and CIPW norm minerals of Karatsu basalt (KBT), and isothermal bulk modulus (Ki) of each mineral.

Files

Files (66.3 kB)

Name Size Download all
md5:1b96d3a566f38a68e436c0649ad7c7a6
18.3 kB Download
md5:9d8eb0a9e28da991d01bea15aa83319d
33.8 kB Download
md5:1c8b140a0eb4364ade488835a9d111a3
14.3 kB Download

Additional details

Funding

断裂带同震温度异常机制:以集集、汶川及日本东北地震为例(The mechanisms of coseismic temperature response in faults zones: taking the Chi-Chi earthquake, the Wenchuan earthquake and the Tohoku earthquake as examples) 41874099
National Natural Science Foundation of China

References

  • Abousleiman, Y., A. H. D. Cheng, C. Jiang, and J. C. Roegiers (1996), Poroviscoelastic analysis of borehole and cylinder problems, Acta Mechanica, 119(1), 199-219, doi:10.1007/BF01274248.
  • Badiey, M., I. Jaya, and A. H.-D. Cheng (1994), Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor, Journal of Computational Acoustics, 02(01), 11-27, doi:10.1142/s0218396x94000038.
  • Berge P. A (1998). Pore compressibility in rocks. In: Thimus J. F., Abousleiman Y., Cheng A. H. D., Coussy O., Detournay E. (Eds.), Poromchanics: A Tribute to Maurice A. Biot, Balkema, pp. 351-356.
  • Berge, P. A., H. F. Wang, and B. P. Bonner (1993), Pore pressure buildup coefficient in synthetic and natural sandstones, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 1135-1141, doi:10.1016/0148-9062(93)90083-P.
  • Berryman, J. G. (1992b), Exact effective-stress rules in rock mechanics, Physical Review A, 46(6), 3307-3311, doi:10.1103/PhysRevA.46.3307.
  • Blöcher, G., T. Reinsch, A. Hassanzadegan, H. Milsch, and G. Zimmermann (2014), Direct and indirect laboratory measurements of poroelastic properties of two consolidated sandstones, International Journal of Rock Mechanics and Mining Sciences, 67, 191-201, doi:10.1016/j.ijrmms.2013.08.033.
  • Cheng, A. H. D. (2016), Poroelasticity, Springer International Publishing, Switzerland, doi:10.1007/978-3-319-25202-5.
  • Cheng, A. H. D. (2021), Intrinsic material constants of poroelasticity, International Journal of Rock Mechanics and Mining Sciences, 142, 104754, doi:10.1016/j.ijrmms.2021.104754.
  • Cowin, S. (1999), Bone poroelasticity. J Biomech, 32(3):217–238, doi:10.1016/S0021-9290(98)00161-4.
  • Coyner, K. B. (1984), Effects of stress, pore pressure, and pore fluids on bulk strain, velocity, and permeability of rocks, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
  • Detournay, E., and A. H. D. Cheng (1993), Fundamentals of Poroelasticity, in Comprehensive Rock Engineering: Principles, Practice and Projects, edited by J. A. Hudson, pp. 113-171, Pergamon Press, Oxford, UK, doi:10.1016/B978-0-08-040615-2.50011-3.
  • El Rabaa, A. W. (1989), Determination of the stress field and fracture direction in the Danian Chalk. In: Maury V., Fourmaintraux D. (Eds.), Rock at great depth. Balkma, Rotterdam/Brookfield, 1017-1024.
  • Fabre, D., and J. Gustkiewicz (1997), Poroelastic properties of limestones and sandstones under hydrostatic conditions, International Journal of Rock Mechanics and Mining Sciences, 34(1), 127-134, doi:10.1016/S1365-1609(97)80038-X.
  • Fatt, I. (1959), The Biot-Willis Elastic Coefficients for a Sandstone, Journal of Applied Mechanics, 26(2), 296-297, doi:10.1115/1.4012001.
  • Hart, D. J., and H. F. Wang (1995), Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone, Journal of Geophysical Research: Solid Earth, 100(B9), 17741-17751, doi:10.1029/95JB01242.
  • Hollister, C. D., D. R. Anderson, and G. R. Heath (1981), Subseabed disposal of nuclear wastes, Science, 213(4514), 1321-1326, doi:10.1126/science.213.4514.1321.
  • Hollocher, K. (2022), NORM4 Excel spreadsheet programs to calculate petrologic norms from whole-rock chemical analyses, Zenodo, doi:10.5281/zenodo.5818037.
  • Kim, Y. K. and H. B. Kingsbury (1979), Dynamic characterization of poroelastic materials. Exp Mech, 19(7):252–258, doi:10.1007/BF02328654.
  • Lide, D. R. (2010), CRC handbook of chemistry and physics, 90th Edition (CD-ROM Version 2010), CRC press/Taylor and Francis, Boca Raton, Florida.
  • McTigue, D. (1986), Thermoelastic response of fluid‐saturated porous rock, Journal of Geophysical Research: Solid Earth (1978–2012), 91(B9), 9533-9542, doi:10.1029/JB091iB09p09533.
  • Mesri, G., G. Adachi, and C. R. Ullrich (1976), Pore-pressure response in rock to undrained change in all-round stress, Géotechnique, 26(2), 317-330, doi:10.1680/geot.1976.26.2.317.
  • Mody, F. K., and A. H. Hale (1993), Borehole-Stability Model To Couple the Mechanics and Chemistry of Drilling-Fluid/Shale Interactions, Journal of Petroleum Technology, 45(11), 1093-1101, doi:10.2118/25728-pa.
  • Nur, A., and J. D. Byerlee (1971), An exact effective stress law for elastic deformation of rock with fluids, Journal of Geophysical Research, 76(26), 6414-6419, doi:10.1029/JB076i026p06414.
  • Pan, Z. (1993), Crystallography and mineralogy, 3rd Edition [in Chinese], Geological Publishing House, Beijing.
  • Paterson, M. S., and T.-f. Wong (2005), Experimental Rock Deformation — The Brittle Field, 2nd ed., Springer-Verlag, Berlin.
  • Powers, D. W., S. J. Lambert, S. E. Shaffer, L. R. Hill, and W. D. Weart (1978), Geological characterization report, Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico, Rep., Medium: ED; Size: Pages: 469 pp, United States, doi:10.2172/6441454.
  • Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys, 14(2), 227-241, doi:10.1029/RG014i002p00227.
  • Schön, J. H. (2011), Physical properties of rocks: a workbook, Elsevier, Oxford.
  • Smit, T. H., J. M. Huyghe, S. C. Cowin (2002), Estimation of the poroelastic parameters of cortical bone. Journal of Biomechanics, 35(6):829–835, doi:10.1016/S0021-9290(02)00021-0.
  • Stoll, R. D., and T. K. Kan (1981), Reflection of acoustic waves at a water–sediment interface, The Journal of the Acoustical Society of America, 70(1), 149-156, doi:10.1121/1.386692.
  • Tadai, O., W. Lin, T. Hirose, and W. Tanikawa (2013), Relationship of Silica content to thermal conductivity of rock samples [in Japanese], Annual Meeting of the Geological Society of Japan, 540, doi:10.14863/geosocabst.2013.0_540.
  • Wang, H. F. (2000), Theory of linear poroelasticity with applications to geomechanics and hydrogeology, edited, Princeton University Press, New Jersey, doi:10.1515/9781400885688.
  • Wechsler, B. A., and C. T. Prewitt (1984), Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure, American Mineralogist, 69(1-2), 176-185.
  • Yew, C. H. and P. N, Jogi (1978), Determination of Biot's parameters for sandstones, 1. Static tests. Exp Mech, 18(5):167–172, doi:10.1007/BF02324137.
  • Yew, C. H., P. N. Jogi, and K. E. Gray (1979), Estimation of the Mechanical Properties of Fluid-Saturated Rocks Using the Measured Wave Motions, Journal of Energy Resources Technology, 101(2), 112-116, doi:10.1115/1.3446899.