Published April 12, 2024 | Version 1
Journal article Open

High resolution chlorophyll-ain-situ fluorescence sensors versusin-vitro chlorophyll-ameasurements in mesocosms with contrasting nutrient and temperature treatments

  • 1. Department of Ecoscience & WATEC, Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
  • 2. Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
  • 3. Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, 16775, Germany

Description

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r 2 < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings.

Harmful algal blooms (HABs) may pose a significant threat to freshwater ecosystems and to animal and human health. Therefore, it is important to monitor changes in algal biomass. Traditional methods, while effective, lack the ability to provide rapid, high-frequency, real-time data. In-situ fluorescence sensors, specifically designed to measure chlorophyll- a (total phytoplankton indicator) and phycocyanin (Blue-green algae indicator), offer a promising solution. However, challenges such as biofouling, temporal changes in phytoplankton composition, and equipment variations complicate the conversion of fluorescence data into equivalent chlorophyll- a concentrations.

Our study aimed to validate measurements from 24 chlorophyll- a and 12 phycocyanin fluorescence in-situ sensors (Cyclops-7F, Turner Designs). We compared these measurements against spectrophotometrically determined (in-vitro method) chlorophyll- a concentrations. Additionally, we tested a data-cleaning procedure to eliminate errors caused by different sources, such as light. The validation and testing were conducted at Lemming Experimental Mesocosm site (Denmark), in 24 experimental tanks (mesocosms) representing 2 different nutrient levels and 3 temperature scenarios.

This study underlines that high-frequency in-situ fluorescence sensors can be useful, only if the user is aware of the possible interacting factors that can influence fluorescence readings (e.g. turbidity, daylight). Therefore, in-situ fluorescence sensors, when properly calibrated and validated, offer a valuable tool for monitoring harmful algal blooms. The high-frequency data provides insights into sudden variations in phytoplankton biomass, demonstrating the potential for improved real-time understanding of freshwater ecosystems.

Files

openreseurope-4-18532.pdf

Files (6.3 MB)

Name Size Download all
md5:4a8aabd8dfa4dcc8d6f674cc174f7012
6.3 MB Preview Download

Additional details

References

  • Aiken CM, Petersen W, Schroeder F (2011). Ship-of opportunity monitoring of the Chilean fjords using the pocket FerryBox. J Atmos Ocean Technol. doi:10.1175/JTECH-D-10-05022.1
  • Bastien C, Cardin R, Veilleux É (2011). Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. J Environ Monit. doi:10.1039/C0EM00366B
  • Bertone E, Chuang A, Burford MA (2019). In-situ fluorescence monitoring of cyanobacteria: Laboratory-based quantification of species-specific measurement accuracy. Harmful Algae. doi:10.1016/j.hal.2019.101625
  • Brager LM, Cranford PJ, Grant J (2015). Spatial distribution of suspended particulate wastes at open-water Atlantic salmon and sablefish aquaculture farms in Canada. Aquac Environ Interact. doi:10.3354/aei00120
  • Campbell D, Hurry V, Clarke AK (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev. doi:10.1128/MMBR.62.3.667-683.1998
  • Carberry L, Roesler CS, Drapeau S (2019). Correcting in situ chlorophyll fluorescence time-series observations for nonphotochemical quenching and tidal variability reveals nonconservative phytoplankton variability in coastal waters. Limnol Oceanogr Methods. doi:10.1002/lom3.10325
  • Carroll M, Chigounis D, Gilbert S (2005). Performance Verification Statement for the TURNER Designs CYCLOPS-7 fluorometer. Alliance Coast Technol.
  • Dashkova V, Malashenkov DV, Baishulakova A (2022). Changes in phytoplankton community composition and phytoplankton cell size in response to nitrogen availability depend on temperature. Microorganisms. doi:10.3390/microorganisms10071322
  • (1997). DS/EN 1484. Water analysis - guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  • (1986). DS-2201. Vandundersøgelse: Klorofyl a spektrofotometrisk måling i ethanolekstrakt.
  • Egeland G, Garrido J, Clementson L (2011). Part VI: Data sheets aiding identification of phytoplankton carotenoids and chlorophylls.
  • Gatz L (2019). Freshwater Harmful Algal Blooms: Causes, Challenges and Policy Considerations.
  • Gregor J, Maršálek B (2004). Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Wat Res. doi:10.1016/j.watres.2003.10.033
  • Hillebrand H, Dürselen CD, Kirschtel D (1999). Biovolume calculation for pelagic and benthic microalgae. J Phycol. doi:10.1046/j.1529-8817.1999.3520403.x
  • Hodges CM, Wood SA, Puddick J (2018). Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Environ Sci Pollut Res. doi:10.1007/s11356-017-0473-5
  • Jaccard P, Hjemann DO, Ruohola J (2021). Quality Control of Biogeochemical Measurements Copernicus in situ TAC. doi:10.13155/36232
  • Jeppesen E, Meerhoff M, Davidson TA (2014). Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol. doi:10.4081/jlimnol.2014.844
  • Kara EL, Hanson P, Hamilton D (2012). Time-scale dependence in numerical simulations: Assessment of physical, chemical, and biological predictions in a stratified lake at temporal scales of hours to months. Environ Model Softw. doi:10.1016/j.envsoft.2012.02.014
  • Kiefer DA (1973a). Fluorescence properties of natural phytoplankton populations. Mar Biol. doi:10.1007/BF00389180
  • Kiefer DA (1973b). Chlorophyll fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress. Mar Biol. doi:10.1007/bf00394110
  • Kuha J, Järvinen M, Salmi P (2020). Calibration of in situ chlorophyll fluorometers for organic matter. Hydrobiologia. doi:10.1007/s10750-019-04086-z
  • Lakowicz JR (2006). Fluorescence Sensing. doi:10.1007/978-0-387-46312-4_19
  • Lawrenz E, Richardson TL (2011). How does the species used for calibration affect chlorophyll a measurements by in situ fluorometry. Estuaries Coasts. doi:10.1007/s12237-010-9346-6
  • Levi EE (2024). Lemming Mesocosm (Denmark): in-situ fluorescence chlorophyll-a calibration, analysis code (Version 1).
  • Levi EE, Jeppesen E, Nejstgaard JC (2024a). Zenodo.
  • Levi EE, Jeppesen E, Nejstgaard JC (2024b). Lemming Mesocosm (Denmark): in-situ fluorescence chlorophyll-a calibration, extended data (Version 1).
  • Liboriussen L, Landkildehus F, Meerhoff M (2005). Global warming: Design of a flow-through shallow lake mesocosm climate experiment. Limnol Oceanogr Methods. doi:10.4319/lom.2005.3.1
  • Lombard F, Boss E, Waite AM (2019). Globally consistent quantitative observations of planktonic ecosystems. Front Mar Sci. doi:10.3389/fmars.2019.00196
  • Lorenzen CJ (1966). A method for the continuous measurement of chlorophyll concentration. Deep-Sea Res Oceanogr Abstr. doi:10.1016/0011-7471(66)91102-8
  • Maung-Saw-Htoo-Thaw , Ohara S, Matsuoka K (2017). Seasonal dynamics influencing coastal primary production and phytoplankton communities along the southern Myanmar coast. J Oceanogr. doi:10.1007/s10872-016-0408-7
  • Millie DF, Pigg RL, Fahnenstiel GL (2010). Algal chlorophylls: a synopsis of analytical methodologies.
  • Muraoka K, McBride C (2018). rB3: Data handling tools for high-frequency lake monitoring buoy observations.
  • Petersen W, Möller KO (2017). Report on the status of sensors used for measuring nutrients, biology-related optical properties, variables of the marine carbonate system, and for coastal profiling, within the JERICO network and, more generally, in the European context. doi:10.13155/50054
  • Poikane S, Birk S, Böhmer J (2015). A hitchhiker's guide to European lake ecological assessment and intercalibration. Ecol Indic. doi:10.1016/j.ecolind.2015.01.005
  • Proctor CW, Roesler CS (2010). New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence. Limnol Oceanogr: Methods. doi:10.4319/lom.2010.8.0695
  • (2022). R: A language and environment for statistical computing.
  • Ralph PJ, Wilhelm C, Lavaud J (2010). Fluorescence as a tool to understand changes in photosynthetic electron flow regulation. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. doi:10.1007/978-90-481-9268-7_4
  • Rousso BZ, Bertone E, Stewart RA (2021). Light-induced fluorescence quenching leads to errors in sensor measurements of phytoplankton chlorophyll and phycocyanin. Wat Res. doi:10.1016/j.watres.2021.117133
  • Roy S, Llewellyn C, Egeland E (2011). Phytoplankton pigments characterization chemotaxonomy and applications in oceanography.
  • Seppälä J (2009). Fluorescence properties of Baltic Sea phytoplankton.
  • Seppälä J, Ylöstalo P, Kaitala S (2007). Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2007.02.015
  • Sharma A, Golubchik L, Govindan R (2010). Sensor faults: Detection methods and prevalence in real-world datasets. ACM Trans Sens Netw. doi:10.1145/1754414.1754419
  • Strandberg U, Hiltunen M, Syväranta J (2022). Combined effects of eutrophication and warming on polyunsaturated fatty acids in complex phytoplankton communities: A mesocosm experiment. Sci Total Environ. doi:10.1016/j.scitotenv.2022.157001
  • Susanti Y, Pratiwi H, Liana T (2014). M estimation, S estimation, and MM estimation in robust regression. Int J Pure Appl Math. doi:10.12732/ijpam.v91i3.7
  • Teh HY, Kempa-Liehr AW, Wang KIK (2020). Sensor data quality: a systematic review. J Big Data. doi:10.1186/s40537-020-0285-1
  • Twiss MR (2011). Variations in chromophoric dissolved organic matter and its influence on the use of pigment-specific fluorimeters in the Great Lakes. J Great Lakes Res. doi:10.1016/j.jglr.2010.11.011
  • Watras CJ, Morrison KA, Rubsam JL (2017). A temperature compensation method for chlorophyll and phycocyanin fluorescence sensors in freshwater. Limnol Oceanogr: Methods. doi:10.1002/lom3.10188
  • Xing X, Claustre H, Boss E (2017). Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter. Limnol Oceanogr: Methods. doi:10.1002/lom3.10144
  • (2005). YSI Technical Note: "Alternate Calibration Methods for the YSI 6025 Chlorophyll Sensor".
  • Zamyadi A, Choo F, Newcombe G (2016). A review of monitoring technologies for real-time management of cyanobacteria: Recent advances and future direction. TrAC Trends Anal Chem. doi:10.1016/j.trac.2016.06.023
  • Zamyadi A, McQuaid N, Dorner S (2012). Cyanobacterial detection using in vivo fluorescence probes: Managing interferences for improved decision-making. J Am Water Works Assoc. doi:10.5942/jawwa.2012.104.0114
  • Zhou Y, Zhou L, Zhang Y (2019). Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes. Wat Res. doi:10.1016/j.watres.2019.115048