Published June 18, 2024 | Version v1
Dataset Open

Node-layer duality in networked systems: multilayer brain networks dataset

  • 1. ROR icon Institut national de recherche en informatique et en automatique
  • 2. Paris Brain Institute
  • 1. ROR icon Institut national de recherche en informatique et en automatique
  • 2. Paris Brain Institute

Description

This dataset contains the processed data used in Presigny, Corsi and De Vico Fallani (2024). It is made available for replication purposes. The code to treat these data is available here.

Multilayer brain networks are obtained from the experimental data published in Guillon et al. (2017). 23 Alzheimer’s diseased (AD) patients and 27 healthy age-matched control (HC) subjects, participated in the study. For each subject, 6 minutes resting-state eyes-closed brain activity was recorded noninvasively using a whole-head MEG system with 102 magnetometers and 204 planar gradiometers (Elekta Neuromag TRIUX MEG system) at a sampling rate of 1000Hz. Signal artefacts were removed using different techniques including removed signal space separation, principal component analysis, and visual inspection. Finally, source-imaging was used to project the signals from the sensor to the source space consisting of N = 70 regions of interest (ROI) defined by the Lausanne cortical atlas parcellation (see file name_of_ROIs.txt for the order). Here, we used spectral bicoherence to estimate functional connectivity between ROIs and between frequencies of brain activity. Specifically, we considered M = 77 layers corresponding to frequencies in the 2 − 40 Hz range with a resolution of 0.5 Hz. Other parameters were non overlapping windows of 2s averaged according to the Welch method. The resulting networks are full-multilayer consisting of both intralayer and interlayer connections, including weighted links between replica nodes.

Files

name_of_ROIS.txt

Files (5.8 GB)

Name Size Download all
md5:311739a5d2374603fcc887bf9d6b598d
116.2 MB Download
md5:fc84439b8bb20139b7e6e55a2110bd49
116.2 MB Download
md5:81132fe33e317f956cd5d14e7ffe32f5
116.2 MB Download
md5:57798815db592b1824942607235c9a22
116.2 MB Download
md5:ac9b88691041162a8782669970054c26
116.2 MB Download
md5:f22dd3468fa0ecffd24558212529410e
116.2 MB Download
md5:4be8cc0ec9a02c27a97806f660085f16
116.2 MB Download
md5:4095c42f1f2e351d59a126e4e37b2c39
116.2 MB Download
md5:c4ccfcb1f3901a06747ae0cd391607eb
116.2 MB Download
md5:94cb994a90cc9d428ad6cf9e8df6f7fc
116.2 MB Download
md5:7f2161d9a0d515554c4fd238715022d3
116.2 MB Download
md5:18fc79c48c073b044867687e98bfa30c
116.2 MB Download
md5:b79123ace502851e872742aa3feaffb3
116.2 MB Download
md5:04ba1a78c965e96f61fcebb50b9d09c7
116.2 MB Download
md5:7eb777a8cdc6813d79cb55d4149e78db
116.2 MB Download
md5:492a6645af3cdb6fde7bc261dd4f2e34
116.2 MB Download
md5:82834a555ae5b46338bd8aab68e838d7
116.2 MB Download
md5:2bce5d96dc1868234d61fee75ed9f6e6
116.2 MB Download
md5:852d195f942ef95e2cd0ec2d25a55bbe
116.2 MB Download
md5:0f24865c06ff9c8e80e1922358202549
116.2 MB Download
md5:0335dfaae71474597e9b89604bf5b33e
116.2 MB Download
md5:adc63d37a569bf9a42665e45bba0b0f1
116.2 MB Download
md5:2d70ad57b07300a6e278bfecaedea0c5
116.2 MB Download
md5:f08faa2f78e3da418abafd94eeed4a98
116.2 MB Download
md5:9487f226b667ce7832dcd9c6810214f3
116.2 MB Download
md5:e141a53c21fb23c0f1f7570c9ad710ee
116.2 MB Download
md5:c0c329ca2b47ac6113e218ad2e3cd56e
116.2 MB Download
md5:4e00070f6e12916979461e7bc30da162
116.2 MB Download
md5:678d8c9f08c802164534f4887323148f
116.2 MB Download
md5:21701f1dae8ac18a9598950f48d80f64
116.2 MB Download
md5:63e8b4883f46ceb7af8297afa7978a6c
116.2 MB Download
md5:ad7d0b6b74bc932067dffe01cc1ecfba
116.2 MB Download
md5:dd9de7a23466fbd02938c23cc9d640bb
116.2 MB Download
md5:f8d07250bf82b78593a2fe6907770f6e
116.2 MB Download
md5:05adf2e8d3ebb29c440d12b19a2ca19b
116.2 MB Download
md5:a77210e5e83ed1217ebaf93cd5786dae
116.2 MB Download
md5:3adb229ca565f5db91e309797c1faa59
116.2 MB Download
md5:d3b391c20917d648d2ffd0f9a5c10dfb
116.2 MB Download
md5:7f4792dd1e36a4d4cc8f471e7aa19944
116.2 MB Download
md5:a9a95b6de30f9786432bfc44e3d33d12
116.2 MB Download
md5:11676e8209bd2270d23ff81c033c1f9e
116.2 MB Download
md5:5574183bbd4db7ed8b29232dd27dee05
116.2 MB Download
md5:fc543e11658152d60bc09405bf5443aa
116.2 MB Download
md5:5f17837d486d5079ad3ff75640ca920c
116.2 MB Download
md5:ef85661a8da9f4b469150fb7204d367f
116.2 MB Download
md5:4a66daccf07aa7b9a48c4dcb1c72f657
116.2 MB Download
md5:f2ae4df1bb0ceb94f676fc8fd2374a24
116.2 MB Download
md5:7e371ea8662e7dc36df3fbcd0b12f975
116.2 MB Download
md5:2e5ece6f74eaedde68e1106680663594
116.2 MB Download
md5:878682c1a206a58b8ccf08bf9767a299
116.2 MB Download
md5:35bf9577760fce77df71aece0df6f328
2.4 kB Preview Download

Additional details

Related works

References
Journal article: 10.1038/s41467-024-50176-5 (DOI)

Dates

Accepted
2024-06-19

References

  • multilayer networks