Food technology progressive solutions
Creators
-
Olesia Priss1
-
Szymon Glowacki2
-
Liudmyla Kiurcheva1
-
Serhii Holiachuk3
-
Kyrylo Samoichuk1
-
Valentyna Verkholantseva1
-
Nadiia Palianychka1
-
Alexandr Kovalyov1
-
Dmytro Dmytrevskyi4
-
Dmytro Horielkov5
-
Vitalii Chervonyi5
-
Volodymyr Voitsekhivskyi6
-
Iryna Bandura1
-
Tetiana Krupodorova7
-
Igor Dudarev3
-
Svitlana Panasyuk3
-
Iryna Taraymovich3
-
Volodymyr Say3
-
Nadiia Zahorko1
-
Yuliia Honchar1
-
Victoriya Gnitsevych8
-
Kateryna Sefikhanova9
-
Tetiana Kolisnychenko1
-
Olena Danchenko1
-
Daniil Maiboroda1
-
Viktoriya Gryshchenko6
-
Mykola Danchenko1
-
Olha Sumska10
-
Nataliia Раnchenko10
-
Olena Ishchenko11
- 1. Dmytro Motornyi Tavria State Agrotechnological University
-
2.
Warsaw University of Life Sciences
-
3.
Lutsk National Technical University
- 4. State Biotechnology University
-
5.
V. N. Karazin Kharkiv National University
-
6.
National University of Life and Environmental Sciences of Ukraine
- 7. Institute of Food Biotechnology and Genomics National Academy of Sciences of Ukraine
-
8.
State University of Trade and Economics
- 9. Autonomous subdivision "Dnipro Faculty of Management and Business of Kyiv University of Culture"
- 10. Kherson State Agrarian and Economic University
-
11.
Kyiv National University of Technologies and Design
Description
The monograph "Food Technology Progressive Solutions" is dedicated to finding effective solutions for reducing food resource losses, their rational use, analysis, and the implementation of innovative technologies in the food industry aimed at improving the quality and preserving the beneficial properties of food products. The book consists of nine chapters, each covering different aspects of food technologies and offering promising solutions for the modern food industry.
Strategies for reducing postharvest losses of vegetables through integral assessment of antioxidant status.
The application of edible coatings with antioxidant properties is an effective strategy for preserving vegetable quality during storage. To make an informed choice of the concentration of exogenous antioxidants in food coatings, it is recommended to evaluate the antioxidant status of the product. A method for the integral assessment of the antioxidant status of vegetables using the analytical hierarchy process has been developed. An example of this integral assessment is provided for three varieties of asparagus of different colors.
The advantages of using sublimation for preserving the antioxidant properties of cranberries.
The benefits of using sublimation for preserving cranberry antioxidant properties have been explored. Sublimation drying has emerged as the most efficient and innovative method, ensuring the retention of cranberry antioxidants. Following the sublimation cycle, the material's final moisture content is only 2–5 % of the initial amount, guaranteeing maximum preservation of beneficial properties and highquality product production.
Analysis of the hypotheses of milk fat phase dispersion and structural features of homogenizers.
A detailed analysis of the structural features of homogenizers and their impact on the dispersity of the milk fat phase, which affects the quality of dairy products, is presented. Analysis of methods of intensifying the dispergating process of milk emulsions resulted into distinguishing prospective ways to increase energy efficiency of homogenizers and designs with the biggest potential for diminishing energy consumption.
Qualimetric assessment and features of quality formation for cultivated mushrooms in accordance with the methods of further processing.
The study examines factors influencing the quality of harvested mushrooms from the Calocybe, Cyclocybe, and Pleurotus genera, as well as methods for assessing raw material quality for processing. It establishes parameters for comprehensive quality assessment, including individual and group indicators, evaluates morphological changes during mushroom maturation, and investigates the nutritional value of mushrooms.
Technology of multilayer and glazed fruit and vegetable chips.
A technology has been developed for producing multilayered and glazed fruit and vegetable chips with enhanced nutritional composition. This method preserves the taste, color, and nutrients of the raw materials, while chocolate helps balance the nutritional value. Additionally, the incorporation of powders from freeze-dried plants enriches the chips with vitamins and minerals, providing them with new flavors and colors.
Improving the quality of dairy sauces by using condensed low-lactose milk whey.
This chapter of the monograph presents research on using fermented mashed pumpkin pulp with high pectin content and condensed low-lactose milk whey in emulsion sauces similar to mayonnaise. The study establishes rational oil emulsification parameters and examines model samples with varying ratios of fermented mashed pumpkin pulp and condensed low-lactose milk whey.
Crafting fermented pepper-based hot sauces.
This study examines craft hot sauce technology, organizing theoretical and methodological advancements, and offering insights into production methods for the restaurant industry. It delves into the principles, features, and practical experiences of craft hot sauce production, emphasizing the benefits of employing innovative technologies in this sector.
Biological activity of phenolic compounds of oats depending on the technology of its use in feeding geese.
The study compares the effects of aqueous extracts from sowing oats and oats on the development of geese and the nutritional value of their meat. Results show that adding oats and alfalfa to the geese's diet boosts meat nutrients. These benefits persist even during prolonged low-temperature storage, improving the meat's nutritional value.
Justification of the technology for the use of phyllophora (Zernov field) carrageenan as a regulator of the consistency of food products.
The results of theoretical and experimental studies, as well as progressive solutions regarding the utilization of the phytocolloid carrageenan extracted from the Black Sea red algae Phyllophora Brody as a food consistency regulator, are presented. The technological aspects of employing carrageenan from the Black Sea red algae Phyllophora Brody are also substantiated.
Files
978-9916-9850-4-5.pdf
Files
(10.9 MB)
Name | Size | Download all |
---|---|---|
md5:54ea9b6169356ce96ea455080eedb1e8
|
10.9 MB | Preview Download |
Additional details
References
- Food-Based Dietary Guidelines. Available at: https://www.fao.org/nutrition/education/food-dietary-guidelines/background/sustainable-dietary-guidelines/en/ Last accessed: 13.02.2024
- Kalmpourtzidou, A., Eilander, A., Talsma, E. F. (2020). Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients, 12 (6), 1558. https://doi.org/10.3390/nu12061558
- Yahia, E. M., Fadanelli, L., Mattè, P., Brecht, J. K. (2019). Controlled atmosphere storage. Postharvest technology of perishable horticultural commodities. Woodhead Publishing, 439–479. https://doi.org/10.1016/b978-0-12-813276-0.00013-4
- Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., Jaćević, V. (2021). The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.552969
- Meitha, K., Pramesti, Y., Suhandono, S. (2020). Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. International Journal of Food Science, 2020, 1–11. https://doi.org/10.1155/2020/8817778
- Mazid, M., Khan, T. A., Khan, Z. H., Quddusi, S., Mohammad, F. (2011). Occurrence, biosynthesis and potentialities of ascorbic acid in plants. International Journal of Plant, Animal and Environmental Sciences, 1 (2), 167–184. Available at: https://www.fortunejournals.com/international-journal-of-plant-animal-and-environmental-sciences-home-ijpaes.php
- Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
- Van den Ende, W., Valluru, R. (2008). Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? Journal of Experimental Botany, 60 (1), 9–18. https://doi.org/10.1093/jxb/ern297
- Peshev, D., Vergauwen, R., Moglia, A., Hideg, É., Van den Ende, W. (2013). Towards understanding vacuolar antioxidant mechanisms: a role for fructans? Journal of Experimental Botany, 64 (4), 1025–1038. https://doi.org/10.1093/jxb/ers377
- Takahama, U. (2004). Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews, 3 (1-2), 207–219. https://doi.org/10.1023/b:phyt.0000047805.08470.e3
- Hodges, D. M., DeLong, J. M. (2007). The relationship between antioxidants and postharvest storage quality of fruits and vegetables. Stewart Postharvest Review, 3 (3), 12. https://doi.org/10.2212/spr.2007.3.12
- Chettri, S., Sharma, N., Mohite, A. M. (2023). Edible coatings and films for shelf-life extension of fruit and vegetables. Biomaterials Advances, 154, 213632. https://doi.org/10.1016/j.bioadv.2023.213632
- Eça, K. S., Sartori, T., Menegalli, F. C. (2014). Films and edible coatings containing antioxidants - a review. Brazilian Journal of Food Technology, 17 (2), 98–112. https://doi.org/10.1590/bjft.2014.017
- Murmu, S. B., Mishra, H. N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245, 820–828. https://doi.org/10.1016/j.foodchem.2017.11.104
- Bouayed, J., Bohn, T. (2010). Exogenous Antioxidants – Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxidative Medicine and Cellular Longevity, 3(4), 228–237. https://doi.org/10.4161/oxim.3.4.12858
- Priss, O., Malkina, V., Kalitka, V. (2014). Integral assessment of antioxidant status of fruit vegetables. Eastern-European Journal of Enterprise Technologies, 5 (11 (71)), 38–41. https://doi.org/10.15587/1729-4061.2014.27668
- Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1 (1), 83–98. https://doi.org/10.1504/ijssci.2008.017590
- Palamarchuk, I., Kiurchev, S., Kiurcheva, L., Verkholantseva, V. (2019). Analysis of Main Process Characteristics of Infrared Drying in the Moving Layer of Grain Produce. Modern Development Paths of Agricultural Production, 317–322. https://doi.org/10.1007/978-3-030-14918-5_33
- Sublimation dryers (lyophilizers) "Bulova" - equipment for the secretion of snail mucus and processing of snail slime from Mucus pro. Available at: https://mucus.pro/freeze-dryers/?languk
- High-quality freezing and freeze-drying thanks to PIGO technologies. Yagidnyk Magazine. Available at: http://www.jagodnik.info/vysokoyakisne-zamorozhuvannya-ta-sublimatsijna-sushka-zavdyaky-tehnologiyam-pigo/
- A new trend in the art of storage and processing of products - sublimation. Storage and freezing news, berry farming as a business. Yagidnyk Magazine.
- Priss, O., Bulhakov, P., Kolisnychenko, T., Gazzavi-Rogozina, L. (2023). Using protective coating for reduction of losses while storing asparagus. Proceedings of Tavria State Agrotechnological University, 1 (23), 188–198. https://doi.org/10.31388/2078-0877-2023-23-1-188-198
- Technology of drying fruits and vegetables (2002). Kyiv: NUHT, 84.
- Sublimation drying of berries. TEN 24. Available at: https://ten24.com.ua/ua/blog/sublimatsionnaya-sushka-yagod/
- Hutsol, T., Priss, O., Kiurcheva, L., Serdiuk, M., Panasiewicz, K., Jakubus, M. et al. (2023). Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger. Sustainability, 15 (15), 11648. https://doi.org/10.3390/su151511648
- Sublimation drying of food products. Available at: https://ten24.com.ua/blog/sublimatsionnaya-sushka-produktov
- Dried cranberries: useful properties of northern berries. Native Kyiv. Available at: https://kyiv.ridna.ua/2016/11/sushena-zhuravlyna-korysni-vlastyvosti-pivnichnoji-yahody/
- Kuznetsova, V. Yu., Kislichenko, V. S. (2019). Proanthocyanidins of cranberry and black currant fruits. Norwegian Journal of development of the International Science, 30 (1), 50–52. Available at: https://nor-ijournal.com/wp-content/uploads/2023/09/NJD_30_1.pdf
- Kurlovich, T. V. (2013). Features of cultivation and medicinal properties of large-fruited cranberry. Medicinal plant growing: from past experience to modern technologies: Materials of the II Intern. Scientific-practical. Internet-conf. Poltava, 51–55.
- Lee, E. J., Patil, B. S., Yoo, K. S. (2015). Antioxidants of 15 onions with white, yellow, and red colors and their relationship with pungency, anthocyanin, and quercetin. LWT - Food Science and Technology, 63 (1), 108–114. https://doi.org/10.1016/j.lwt.2015.03.028
- Serdyuk, M. Ye., Priss, O. P., Gaprindashvili, N. A. et al. (2020). Research workshop. Part 1. Methods for studying fruit and berry products. Melitopol: Lux, 364.
- Rupasinghe, H. P. V., Parmar, I., Neir, S. V. (2019). Biotransformation of Cranberry Proanthocyanidins to Probiotic Metabolites byLactobacillus rhamnosusEnhances Their Anticancer Activity in HepG2 CellsIn Vitro. Oxidative Medicine and Cellular Longevity, 2019, 1–14. https://doi.org/10.1155/2019/4750795
- Dhankhar, P. (2014). Homogenization Fundamentals. IOSR Journal of Engineering, 4 (5), 1–8. https://doi.org/10.9790/3021-04540108
- Haponiuk, E., Zander, L., Probola, G. (2015). Effect of the homogenization process on the rheological properties of food emulsions. Polish Journal of Natural Sciences, 30, 149–158.
- Tartar, L. (2009). The General Theory of Homogenization. Lecture Notes. Berlin/Heidelberg: Springer, 470. https://doi.org/10.1007/978-3-642-05195-1
- Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Bergenståhl, B., Trägårdh, C. (2010). Visual observations and acoustic measurements of cavitation in an experimental model of a high-pressure homogenizer. Journal of Food Engineering, 100 (3), 504–513. https://doi.org/10.1016/j.jfoodeng.2010.04.038
- Baranovskii, N. V. (1995). Vliianie gidravlicheskikh faktorov na stependispersnosti zhira pri gomogenizatcii moloka [PhD dissertation]. Moscow, Russia.
- Yong, A. P., Islam, Md. A., Hasan, N. (2017). The Effect of pH and High-Pressure Homogenization on Droplet Size. International Journal of Engineering Materials and Manufacture, 2 (4), 110–122. https://doi.org/10.26776/ijemm.02.04.2017.05
- Nuzhin, E. V., Gladushniak, A. K. (2007). Gomogenizatciia i gomogenizatory. Odessa: Printing House, 264.
- Innings, F., Trägårdh, C. (2005). Visualization of the Drop Deformation and Break‐Up Process in a High Pressure Homogenizer. Chemical Engineering & Technology, 28 (8), 882–891. Portico. https://doi.org/10.1002/ceat.200500080
- Fialkova, E. A. (2006). Gomogenizatciia. Novyi vzgliad. Saint Petersburg: GIORD, 392.
- Deynichenko, G., Kyrylo, S., Yudina, T., Dmytrevskyi, D., Chervonyi, V. (2018). Parameter optimization of milk pulsation homogenizer. Journal of Hygienic Engineering and Design, 24, 63–67.
- Panchenko, А., Voloshina, А., Panchenko, I., Titova, O., Caldare, A. (2020). Design of Hydraulic Mechatronic Systems with Specified Output Characteristics. Advances in Design, Simulation and Manufacturing IІI. DSMIE 2020. Lecture Notes in Mechanical Engineering, 42–51. https://doi.org/10.1007/978-3-030-50491-5_5
- Samoichuk, K., Zahorko, N., Oleksiienko, V., Petrychenko, S. (2019). Generalization of factors of milk homogenization. Modern Development Paths of Agricultural Production: Trends and Innovations, 191–197. https://doi.org/10.1007/978-3-030-14918-5_21
- Samoichuk, K., Zhuravel, D., Palyanichka, N., Oleksiienko, V., Petrychenko, S., Slobodyanyuk, N. et al. (2020). Improving the quality of milk dispersion in a counter-jet homogenizer. Potravinarstvo Slovak Journal of Food Sciences, 14, 633–640. https://doi.org/10.5219/1407
- Liao, Y., Lucas, D. (2009). A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64 (15), 3389–3406. https://doi.org/10.1016/j.ces.2009.04.026
- Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Trägårdh, C., Bergenståhl, B. (2013). Velocity measurements of turbulent two-phase flow in a high-pressure homogenizer model. Chemical Engineering Communications, 200 (1), 93–114. https://doi.org/10.1080/00986445.2012.691921
- Valencia‐Flores, D. C., Hernández‐Herrero, M., Guamis, B., Ferragut, V. (2013). Comparing the Effects of Ultra‐High‐Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. Journal of Food Science, 78 (2), 199–205. https://doi.org/10.1111/1750-3841.12029
- Huppertz, T. (2011). Homogenization of Milk / Other Types of Homogenizer (High-Speed Mixing, Ultrasonics, Microfluidizers, Membrane Emulsification). Encyclopedia of Dairy Sciences, 761–764. https://doi.org/10.1016/b978-0-12-374407-4.00226-0
- Promtov, M. A., Monastirsky, M. X. (2000). Dynamic of cavitational bubbles in rotor impuls apparatus Journal of Qingdao Just of Chemistry Technical, 21 (4), 318–321.
- Droździel, P., Vitenko, T., Voroshchuk, V., Narizhnyy, S., Snizhko, O. (2021). Discrete-Impulse Energy Supply in Milk and Dairy Product Processing. Materials, 14 (15), 4181. https://doi.org/10.3390/ma14154181
- Samoichuk, K., Kiurchev, S., Oleksiienko, V., Palyanichka, N., & Verholantseva, V. (2016). Research into milk homogenization in the pulsation machine with a vibrating rotor. Eastern-European Journal of Enterprise Technologies, 6 (11 (84)), 16–21. https://doi.org/10.15587/1729-4061.2016.86974
- Liu, C., Li, M., Liang, C., Wang, W. (2013). Measurement and analysis of bimodal drop size distribution in a rotor–stator homogenizer. Chemical Engineering Science, 102, 622–631. https://doi.org/10.1016/j.ces.2013.08.030
- van der Schaaf, U. S., Karbstein, H. P. (2018). Fabrication of Nanoemulsions by Rotor-Stator Emulsification Nanoemulsions: Formulation, Applications, and Characterization, 141–1745. https://doi.org/10.1016/b978-0-12-811838-2.00006-0
- Shurchkova, Yu. A. (1999). New class of devices for liquid dispersion via discrete-pulsed energy input. Heat Transfer Research, 30 (1), 1–9.
- Delmas, H., Barthe, L. (2015). Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. Power Ultrasonics Applications of High-Intensity Ultrasound, 757–791. https://doi.org/10.1016/b978-1-78242-028-6.00025-9
- Samoichuk, K., Kovalyov, A., Oleksiienko, V., Palianychka, N., Dmytrevskyi, D., Chervonyi, V., Horielkov, D., Zolotukhina, I., Slashcheva, A. (2020). Determining the quality of milk fat dispersion in a jet-slot milk homogenizer. Eastern-European Journal of Enterprise Technologies, 5 (11 (107)), 16–24. https://doi.org/10.15587/1729-4061.2020.213236
- Fonte, C. P., Fletcher, D. F., Guichardon, P., Aubin, J. (2020). Simulation of micromixing in a T-mixer under laminar flow conditions. Chemical Engineering Science, 222, 115706. https://doi.org/10.1016/j.ces.2020.115706
- Ciron, C. I. E., Gee, V. L., Kelly, A. L., Auty, M. A. E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20 (5), 314–320. https://doi.org/10.1016/j.idairyj.2009.11.018
- Ward, K., Fan, Z. H. (2015). Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering, 25 (9), 94001–94017. https://doi.org/10.1088/0960-1317/25/9/094001
- Thaker, A. H., Ranade, V. V. (2022). Emulsions Using a Vortex-Based Cavitation Device: Influence of Number of Passes, Pressure Drop, and Device Scale on Droplet Size Distributions. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.2c03714
- Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T., Saeys, W. (2020). Milk homogenization monitoring: Fat globule size estimation from scattering spectra of milk. Innovative Food Science & Emerging Technologies, 60, 102311. https://doi.org/10.1016/j.ifset.2020.102311
- Samoichuk, K., Kovalyov, A., Fuchadzhy, N., Hutsol, T., Jurczyk, M., Pająk, T. et al. (2023). Energy Costs Reduction for Dispersion Using a Jet-Slot Type Milk Homogenizer. Energies, 16 (5), 2211. https://doi.org/10.3390/en16052211
- Samoichuk, K., Zhuravel, D., Viunyk, O., Milko, D., Bondar, A., Sukhenko, Y. et al. (2020). Research on milk homogenization in the stream homogenizer with separate cream feeding. Potravinarstvo Slovak Journal of Food Sciences, 14, 142–148. https://doi.org/10.5219/1289
- Voloshina, A., Panchenko, O., Boltyansky, O., Titova, O.; Ivanov, V. et al. (Eds.) (2020). Improvement of Manufacture Workability for Distribution Systems of Planetary Hydraulic Machines. Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering. Cham: Springer, 732–741. https://doi.org/10.1007/978-3-030-22365-6_73
- Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry. Measurement, 58, 93–102. https://doi.org/10.1016/j.measurement.2014.08.022
- Di Marzo, L., Cree, P., Barbano, D. M. (2016). Prediction of fat globule particle size in homogenized milk using Fourier transform mid-infrared spectra. Journal of Dairy Science, 99 (11), 8549–8560. https://doi.org/10.3168/jds.2016-11284
- Rayner, M. Dejmek, P. (Eds.) (2015). Engineering Aspects of Emulsification and Homogenization. CRC Press, Taylor & Francis Group, 322. https://doi.org/10.1201/b18436
- Morales, J. O., Watts, A. B., McConville, J. T. (2016). Mechanical Particle-Size Reduction Techniques. AAPS Advances in the Pharmaceutical Sciences Series, 165–213. https://doi.org/10.1007/978-3-319-42609-9_4
- Acharyaa, S., Mishrab, V., Patelc, J. (2021). Enhancing the mixing process of two miscible fluids: A review. AIP Conference Proceedings, 2341, 030025. https://doi.org/10.1063/5.0051818
- Wang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., Qiu, T. (2020). Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chemical Engineering Science, 226, 115838. https://doi.org/10.1016/j.ces.2020.115838
- Global production of vegetables in 2022, by type (2023). Available at: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ Last accessed: 24.02.2024
- Li, C., Xu, S. (2022). Edible mushroom industry in China: current state and perspectives. Applied Microbiology and Biotechnology, 106 (11), 3949–3955. https://doi.org/10.1007/s00253-022-11985-0
- Standards. Codex Alimentarius FAO-WHO. Available at: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ Last accessed: 07.07.2022
- Bandura, I. I., Kulyk, A. S., Makohon, S. V., Khareba, O. V., Khareba, V. V. (2021). Influence of the substrate composition on the yield and nutritional value of the fruiting bodies of the edible mushrooms Pleurotus citrinopileatus and Cyclocybe aegerita. Plant Varieties Studying and Protection, 17 (2), 130–138. https://doi.org/10.21498/2518-1017.17.2.2021.236519
- Carrasco, J., Tello, M. L., Perez, M., Preston, G. (2018). Biotechnological requirements for the commercial cultivation of macrofungi: substrate and casing layer. Biology of macrofungi. Cham: Springer, 159–175. https://doi.org/10.1007/978-3-030-02622-6_7
- Yang, J., Zhao, J., Yu, H., Wang, Y., Wang, R., Tang, L.; Li, D., Chen, Y. (Eds.) (2013). Mathematical study of the effects of temperature and humidity on the morphological development of Pleurotus eryngii fruit body. Computer and Computing Technologies in Agriculture VI. CCTA 2012. IFIP Advances in Information and Communication Technology, Vol 392. Berlin, Heidelberg: Springer, 312–323. https://doi.org/10.1007/978-3-642-36124-1_38
- Baston, O., Pricop, E. M., Lungu, C. (2016). The influence of frozen storage on some commercial mushrooms. Food and Environment Safety Journal, 13 (4), 321–326. http://fens.usv.ro/index.php/FENS/article/view/119
- Bernaś, E., Jaworska, G., Kmiecik, W. (2006). Storage and processing of edible mushrooms. Acta Scientiarum Polonorum Technologia Alimentaria, 5 (2), 5–23.
- Bobel, I., Adamczyk, G., Falendysh, N. (2022). Nutritional and biological value of mushroom snacks. Food and Environment Safety Journal, 21 (2), 190–197. https://doi.org/10.4316/fens.2022.018
- Roncero-Ramos, I., Mendiola-Lanao, M., Pérez-Clavijo, M., Delgado-Andrade, C. (2016). Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms. International Journal of Food Sciences and Nutrition, 68 (3), 287–297. https://doi.org/10.1080/09637486.2016.1244662
- Ng, Z. X., Tan, W. C. (2017). Impact of optimised cooking on the antioxidant activity in edible mushrooms. Journal of Food Science and Technology, 54 (12), 4100–4111. https://doi.org/10.1007/s13197-017-2885-0
- Jabłońska‐Ryś, E., Skrzypczak, K., Sławińska, A., Radzki, W., Gustaw, W. (2019). Lactic Acid Fermentation of Edible Mushrooms: Tradition, Technology, Current State of Research: A Review. Comprehensive Reviews in Food Science and Food Safety, 18 (3), 655–669. https://doi.org/10.1111/1541-4337.12425
- Jaworska, G., Bernaś, E. (2009). Qualitative changes in Pleurotus ostreatus (Jacq.: Fr.) Kumm. mushrooms resulting from different methods of preliminary processing and periods of frozen storage. Journal of the Science of Food and Agriculture, 89 (6), 1066–1075. https://doi.org/10.1002/jsfa.3557
- Czapski, J., Szudyga, K. (2000). Frozen Mushrooms Quality as Affected by Strain, Flush, Treatment Before Freezing, and Time of Storage. Journal of Food Science, 65 (4), 722–725. https://doi.org/10.1111/j.1365-2621.2000.tb16079.x
- Isik, N.I.-E., Izlin, N. (2014). Effect of different drying methods on drying characteristics, colour and microstructure properties of mushroom. Journal of Food and Nutrition Research., 53 (2), 105–116.
- Tian, Y., Zhao, Y., Huang, J., Zeng, H., Zheng, B. (2016). Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry, 197, 714–722. https://doi.org/10.1016/j.foodchem.2015.11.029
- Cirlincione, F., Venturella, G., Gargano, M. L., Ferraro, V., Gaglio, R., Francesca, N. et al. (2022). Functional bread supplemented with Pleurotus eryngii powder: A potential new food for human health. International Journal of Gastronomy and Food Science, 27, 100449. https://doi.org/10.1016/j.ijgfs.2021.100449
- Wang, M., Zhao, R. (2023). A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. Journal of Future Foods, 3 (1), 1–7. https://doi.org/10.1016/j.jfutfo.2022.09.001
- Jesenak, M., Majtan, J., Rennerova, Z., Kyselovic, J., Banovcin, P., Hrubisko, M. (2013). Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. International Immunopharmacology, 15 (2), 395–399. https://doi.org/10.1016/j.intimp.2012.11.020
- Das, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K. et al. (2021). Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules, 26 (9), 2463. https://doi.org/10.3390/molecules26092463
- Snopek, S. (2021). When and what mushrooms in a child's diet? – ePositive Feedback. ePozytywna Opinia. 2021. Available at: https://epozytywnaopinia.pl/en/when-and-what-mushrooms-in-the-child%27s-diet Last accessed: 28.02.2024
- Aishah, M. S., Wan Rosli, W. I. (2013). The effect of addition of oyster mushroom (Pleurotus sajor-caju) on nutrient composition and sensory acceptation of selected wheat-and rice-based products. International Food Research Journal, 20, 183–188.
- Wasser, S. (2002). (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60 (3), 258–274. https://doi.org/10.1007/s00253-002-1076-7
- Saxami, G., Mitsou, E. K., Kerezoudi, E. N., Mavrouli, I., Vlassopoulou, M., Koutrotsios, G. et al. (2023). In Vitro Fermentation of Edible Mushrooms: Effects on Faecal Microbiota Characteristics of Autistic and Neurotypical Children. Microorganisms, 11 (2), 414. https://doi.org/10.3390/microorganisms11020414
- Hagan, L. L., Johnson, P. N. T., Obodai, M., Blay, A. M. Y., Simons, C., Dzomeku, M. (2018). Sensory attributes of three edible tropical mushrooms and their use in formulating food products for children 2-5 years old. International Journal of Nutrition and Food Sciences, 7, 100–109. https://doi.org/10.11648/j.ijnfs.20180703.14
- Rodrigues Barbosa, J., dos Santos Freitas, M. M., da Silva Martins, L. H., de Carvalho, R. N. (2020). Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydrate Polymers, 229, 115550. https://doi.org/10.1016/j.carbpol.2019.115550
- Sánchez, C.; Puri, M. (Ed.) (2017). Bioactives from mushroom and their application. Food Bioactives: extraction and biotechnology applications. Cham: Springer International Publishing, 23–57. https://doi.org/10.1007/978-3-319-51639-4_2
- Leong, Y. K., Yang, F.-C., Chang, J.-S. (2021). Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers, 251, 117006. https://doi.org/10.1016/j.carbpol.2020.117006
- Jing, L. I. (2009). Study on the processing technology of functional yoghurt from golden mushroom polysaccharide. Journal of Anhui Agricultural Sciences, 3.
- XuJie, H., Na, Z., SuYing, X., ShuGang, L., BaoQiu, Y. (2008). Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage. Carbohydrate Polymers, 73 (2), 289–294. https://doi.org/10.1016/j.carbpol.2007.11.033
- Bandura, I. I., Kulyk, A. S., Bisko, N. A., Khareba, O. V., Tsyz, O. M., Khareba, V. V. (2020). Analysis of the biological efficiency and quality factors of mushrooms of the genus Pleurotus (Fr.) P.Kumm as a model of effective cultivation of lignicolous fungi with high functional value. Plant Varieties Studying and Protection, 16 (4), 334–342. https://doi.org/10.21498/2518-1017.16.4.2020.224047
- Beyer, D. M. (2017). Six steps to mushroom farming. Penn State Extension. Available at: https://extension.psu.edu/six-steps-to-mushroom-farming. Last accessed: 06.03.2020
- Patel, P., Trivedi, R. (2016). Yield Performance of Calocybe indica on Different Agricultural Subatrate. International Research Journal of Engineering, IT & Scientific Research, 2 (3), 66–71. https://doi.org/10.21744/irjeis.v2i3.45
- Rezaeian, S. H., HR, P., Shahtahmasbi, S. H. (2022). Cultivation of black poplar mushroom, Cyclocybe aegerita, on woody and non-woody lignocellulosic substrates with a high biological efficiency. Asian Journal of Mycology, 5 (1), 31–39. https://doi.org/10.5943/ajom/5/1/3
- Hu, S.-H., Wu, C.-Y., Chen, Y.-K., Wang, J.-C., Chang, S.-J. (2013). Effect of Light and Atmosphere on the Cultivation of the Golden Oyster Culinary-Medicinal Mushroom, Pleurotus citrinopileatus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15 (1), 101–111. https://doi.org/10.1615/intjmedmushr.v15.i1.110
- Raman, J., Jang, K.-Y., Oh, Y.-L., Oh, M., Im, J.-H., Lakshmanan, H., Sabaratnam, V. (2020). Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology, 49 (1), 1–14. https://doi.org/10.1080/12298093.2020.1835142
- Islam, M.T., Zakaria, Z., Hamidin, N., Ishak, M. A. B. B. M. (2017). (2017). Indoor Cultivation Model of Humidifying and Ventilation Systems for Grey Oyster Mushroom (Pleurotus pulmonarius). Indian Journal of Science and Technology, 10 (41), 1–12. https://doi.org/10.17485/ijst/2017/v10i41/101378
- Bandura, I., Makohon, S., Tsyz, O., Ivanova, I., Khareba, O., Khareba, V. et al. (2022). Effect of different grain spawn materials on Pleurotus ostreatus (Jacq.) P. Kumm. mushroom cultivation under unregulated and regulated fruiting conditions. Acta Agriculturae Slovenica, 118(1). https://doi.org/10.14720/aas.2022.118.1.1862
- Chang, S. T., Lau, O. W., Cho, K. Y. (1981). The cultivation and nutritional value of Pleurotus sajor-caju. European Journal of Applied Microbiology and Biotechnology, 12 (1), 58–62. https://doi.org/10.1007/bf00508120
- Dimopoulou, M., Kolonas, A., Mourtakos, S., Androutsos, O., Gortzi, O. (2022). Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Applied Sciences, 12 (16), 8074. https://doi.org/10.3390/app12168074
- Marangoni, F., Martini, D., Scaglioni, S., Sculati, M., Donini, L. M., Leonardi, F. et al. (2019). Snacking in nutrition and health. International Journal of Food Sciences and Nutrition, 70 (8), 909–923. https://doi.org/10.1080/09637486.2019.1595543
- Tripicchio, G. L., Kachurak, A., Davey, A., Bailey, R. L., Dabritz, L. J., Fisher, J. O. (2019). Associations between Snacking and Weight Status among Adolescents 12–19 Years in the United States. Nutrients, 11 (7), 1486. https://doi.org/10.3390/nu11071486
- Zizza, C. A., Xu, B. (2012). Snacking Is Associated with Overall Diet Quality among Adults. Journal of the Academy of Nutrition and Dietetics, 112 (2), 291–296. https://doi.org/10.1016/j.jada.2011.08.046
- Williamson, V., Dilip, A., Dillard, J., Morgan-Daniel, J., Lee, A., Cardel, M. (2020). The Influence of Socioeconomic Status on Snacking and Weight among Adolescents: A Scoping Review. Nutrients, 12 (1), 167. https://doi.org/10.3390/nu12010167
- Miller, R., Benelam, B., Stanner, S. A., Buttriss, J. L. (2013). Is snacking good or bad for health: An overview. Nutrition Bulletin, 38 (3), 302–322. https://doi.org/10.1111/nbu.12042
- Dhital, S., Baier, S. K., Gidley, M. J., Stokes, J. R. (2018). Microstructural properties of potato chips. Food Structure, 16, 17–26. https://doi.org/10.1016/j.foostr.2018.03.001
- Arslan, M., Xiaobo, Z., Shi, J., Rakha, A., Hu, X., Zareef, M. et al. (2018). Oil Uptake by Potato Chips or French Fries: A Review. European Journal of Lipid Science and Technology, 120 (10). https://doi.org/10.1002/ejlt.201800058
- Mellema, M. (2003). Mechanism and reduction of fat uptake in deep-fat fried foods. Trends in Food Science & Technology, 14 (9), 364–373. https://doi.org/10.1016/s0924-2244(03)00050-5
- Kurek, M., Ščetar, M., Galić, K. (2017). Edible coatings minimize fat uptake in deep fat fried products: A review. Food Hydrocolloids, 71, 225–235. https://doi.org/10.1016/j.foodhyd.2017.05.006
- Vaitkevičienė, N., Jarienė, E., Kulaitienė, J., Levickienė, D. (2022). The Physico-Chemical and Sensory Characteristics of Coloured-Flesh Potato Chips: Influence of Cultivar, Slice Thickness and Frying Temperature. Applied Sciences, 12 (3), 1211. https://doi.org/10.3390/app12031211
- Deribew, H. A., Woldegiorgis, A. Z. (2021). Acrylamide levels in coffee powder, potato chips and French fries in Addis Ababa city of Ethiopia. Food Control, 123, 107727. https://doi.org/10.1016/j.foodcont.2020.107727
- Jayanty, S. S., Diganta, K., Raven, B. (2019). Effects of Cooking Methods on Nutritional Content in Potato Tubers. American Journal of Potato Research, 96 (2), 183–194. https://doi.org/10.1007/s12230-018-09704-5
- García-Alonso, A., Goñi, I. (2000). Effect of processing on potato starch: In vitro availability and glycaemic index. Nahrung/Food, 44 (1), 19–22. https://doi.org/10.1002/(sici)1521-3803(20000101)44:1<19::aid-food19>3.0.co;2-e
- Serna-Saldivar, S. O. (2022). Overview and State-of-the-Art of the Snack Food Industry. Snack Foods, 1–24. https://doi.org/10.1201/9781003129066-1
- Nour, V., Trandafir, I., Ionica, M. E. (2010). Compositional Characteristics of Fruits of several Apple (Malus domestica Borkh.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38 (3), 228–233. Available at: https://www.notulaebotanicae.ro/index.php/nbha/article/view/4762
- Kumar, P., Sethi, S., Sharma, R. R., Singh, S., Saha, S., Sharma, V. K. et al. (2018). Nutritional characterization of apple as a function of genotype. Journal of Food Science and Technology, 55 (7), 2729–2738. https://doi.org/10.1007/s13197-018-3195-x
- Feng, S., Yi, J., Li, X., Wu, X., Zhao, Y., Ma, Y., Bi, J. (2021). Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. Journal of Agricultural and Food Chemistry, 69 (1), 7–27. https://doi.org/10.1021/acs.jafc.0c05481
- Sánchez‐Moreno, C., De Pascual‐Teresa, S., De Ancos, B., Cano, M. P. (2006). Nutritional Values of Fruits. Handbook of Fruits and Fruit Processing, 29–43. https://doi.org/10.1002/9780470277737.ch2
- Itai, A. (2007). Pear. Genome Mapping and Molecular Breeding in Plants, 157–170. https://doi.org/10.1007/978-3-540-34533-6_6
- Kalkisim, O., Okcu, Z., Karabulut, B., Ozdes, D., Duran, C. (2017). Evaluation of Pomological and Morphological Characteristics and Chemical Compositions of Local Pear Varieties (Pyrus communis L.) Grown in Gumushane, Turkey. Erwerbs-Obstbau, 60 (2), 173–181. https://doi.org/10.1007/s10341-017-0354-6
- Öztürk, A., Demirsoy, L., Demirsoy, H., Asan, A., Gül, O. (2014). Phenolic Compounds and Chemical Characteristics of Pears (Pyrus CommunisL.). International Journal of Food Properties, 18 (3), 536–546. https://doi.org/10.1080/10942912.2013.835821
- Sharma, K. D., Karki, S., Thakur, N. S., Attri, S. (2011). Chemical composition, functional properties and processing of carrot – a review. Journal of Food Science and Technology, 49 (1), 22–32. https://doi.org/10.1007/s13197-011-0310-7
- Bradeen, J. M., Simon, P. W. (2007). Carrot. Genome Mapping and Molecular Breeding in Plants, 161–184. https://doi.org/10.1007/978-3-540-34536-7_4
- Kale, R. G., Sawate, A. R., Kshirsagar, R. B., Patil, B. M., Mane, R. P. (2018). Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). International Journal of Chemical Studies, 6 (2), 2977–2979. Available at: https://www.chemijournal.com/archives/2018/vol6issue2/PartAP/6-2-300-442.pdf
- Bavec, M., Turinek, M., Grobelnik-Mlakar, S., Slatnar, A., Bavec, F. (2010). Influence of Industrial and Alternative Farming Systems on Contents of Sugars, Organic Acids, Total Phenolic Content, and the Antioxidant Activity of Red Beet (Beta vulgarisL. ssp.vulgarisRote Kugel). Journal of Agricultural and Food Chemistry, 58 (22), 11825–11831. https://doi.org/10.1021/jf103085p
- Kopczyńska, K., Średnicka-Tober, D., Hallmann, E., Wilczak, J., Wasiak-Zys, G., Wyszyński, Z. et al. (2021). Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo). Foods, 10 (10), 2475. https://doi.org/10.3390/foods10102475
- Martínez-Valdivieso, D., Gómez, P., Font, R., Río-Celestino, M. D. (2014). Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes. European Food Research and Technology, 240 (1), 71–81. https://doi.org/10.1007/s00217-014-2308-7
- Singh, K. K., Mridula, D., Barnwal, P., Rehal, J. (2012). Physical and chemical properties of flaxseed. International Agrophysics, 26, 423–426. Available at: http://www.international-agrophysics.org/Physical-and-chemical-properties-of-flaxseed,103983,0,2.html
- Bernacchia, R., Preti, R., Vinci, G. (2014). Chemical composition and health benefits of flaxseed. Austin Journal of Nutrition and Food Sciences, 2 (8), 1045. Available at: https://austinpublishinggroup.com/nutrition-food-sciences/fulltext/ajnfs-v2-id1045.php
- Demina, E. N., Safronova, O. V., Kuprina, I. K., Kochieva, I. V., Abaeva, S. K. (2021). Research of the mineral composition of freeze-dried plant powders. IOP Conference Series: Earth and Environmental Science, 848 (1), 012040. https://doi.org/10.1088/1755-1315/848/1/012040
- Żyżelewicz, D., Oracz, J., Bilicka, M., Kulbat-Warycha, K., Klewicka, E. (2021). Influence of Freeze-Dried Phenolic-Rich Plant Powders on the Bioactive Compounds Profile, Antioxidant Activity and Aroma of Different Types of Chocolates. Molecules, 26 (22), 7058. https://doi.org/10.3390/molecules26227058
- Linovskaya, N. V., Mazukabzova, E. V., Kondratev, N. B., Krylova, E. N. (2019). The study of the technological adequacy of raw materials used in the production of chocolate semi-finished product. Vestnik MGTU, 22 (3), 404–412. https://doi.org/10.21443/1560-9278-2019-22-3-404-412
- Lambert, J. D. (2017). Nutritional and health aspects of chocolate. Beckett's Industrial Chocolate Manufacture and Use, 521–531. https://doi.org/10.1002/9781118923597.ch22
- Cinquanta, L., Di Cesare, C., Manoni, R., Piano, A., Roberti, P., Salvatori, G. (2016). Mineral essential elements for nutrition in different chocolate products. International Journal of Food Sciences and Nutrition, 67 (7), 773–778. https://doi.org/10.1080/09637486.2016.1199664
- Alañón, M. E., Castle, S. M., Siswanto, P. J., Cifuentes-Gómez, T., Spencer, J. P. E. (2016). Assessment of flavanol stereoisomers and caffeine and theobromine content in commercial chocolates. Food Chemistry, 208, 177–184. https://doi.org/10.1016/j.foodchem.2016.03.116
- AOAC Official Method 934.06 Moisture in Dried Fruits. Available at: http://files.foodmate.com/2013/files_2914.html
- Shahnawaz, M., Sheikh, S. A., Nizamani, S. M. (2009). Determination of Nutritive Values of Jamun Fruit (Eugenia jambolana) Products. Pakistan Journal of Nutrition, 8 (8), 1275–1280. https://doi.org/10.3923/pjn.2009.1275.1280
- Pudovkin, O. P. (2021). Application of qualimetric methods for assessing quality of complex products. Journal of Physics: Conference Series, 1728 (1), 012018. https://doi.org/10.1088/1742-6596/1728/1/012018
- Oliveira, S. M., Brandão, T. R. S., Silva, C. L. M. (2015). Influence of Drying Processes and Pretreatments on Nutritional and Bioactive Characteristics of Dried Vegetables: A Review. Food Engineering Reviews, 8 (2), 134–163. https://doi.org/10.1007/s12393-015-9124-0
- Dudarev, I., Panasyuk, S., Taraymovich, I. (2022). Innovative Technology of Chocolate Covered Multi Layered Chips. Restaurant and Hotel Consulting. Innovations, 5 (1), 131–146. https://doi.org/10.31866/2616-7468.5.1.2022.260886 1. Mayonnaise Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028 (2022). Available at: https://www.imarcgroup.com/prefeasibility-report-mayonnaise-manufacturing-plant
- Pasport rynku sousnoi hrupy i plodovo-ovochevoi konservatsii v Ukraini. 2020 rik (2020). Available at: https://pro-consulting.ua/ua/issledovanie-rynka/pasport-rynka-sousnoj-gruppy-i-plodovoovoshnoj-konservacii-v-ukraine-2020-god
- Cremonte, E. M., Galdi, E., Roncallo, C., Boni, E., Cremonte, L. G. (2021). Adult onset egg allergy: a case report. Clinical and Molecular Allergy, 19 (1). https://doi.org/10.1186/s12948-021-00156-7
- Kwiatkowska, I., Olszak, J., Formanowicz, P., Formanowicz, D. (2022). Nutritional Status and Habits among People on Vegan, Lacto/Ovo-Vegetarian, Pescatarian and Traditional Diets. Nutrients, 14 (21), 4591. https://doi.org/10.3390/nu14214591
- Prabsangob, N., Udomrati, S. (2024). Acid-modified pea protein isolate and okara cellulose crystal: A co-emulsifier to improve physico-chemical stability of fat-reduced eggless mayonnaise. Future Foods, 9. https://doi.org/10.1016/j.fufo.2024.100298
- Büyük, M., Ata, A., Yemenicioğlu, A. (2024). Application of pectin-grape seed polyphenol combination restores consistency and emulsion stability and enhances antioxidant capacity of reduced oil aquafaba vegan mayonnaise. Food and Bioproducts Processing, 144, 123–131. https://doi.org/10.1016/j.fbp.2024.01.010
- Tian, T., Liu, S., Li, L., Wang, S., Cheng, L., Feng, J. et al. (2023). Soy protein fibrils–β-carotene interaction mechanisms: Toward high nutrient plant-based mayonnaise. LWT, 184. https://doi.org/10.1016/j.lwt.2023.114870
- Neperenosymist laktozy: symptomy i porady likaria (2019). Available at: https://gazeta.ua/articles/health/_neperenosimist-laktozi-simptomi-i-poradi-likarya/880477
- Derzhavna sluzhba statystyky Ukrainy. Available at: http://www.ukrstat.gov.ua
- Honchar, Y., Gnitsevych, V. (2020). Rheological properties of model systems of semi-finished products based on condensed low-lactose whey. Food Science and Applied Biotechnology, 3 (2), 204–211. https://doi.org/10.30721/fsab2020.v3.i2.81
- Hnitsevych, V. A., Honchar, Yu. M. (2018). Sposib vyrobnytstva zghushchenoi fermentovanoi molochnoi syrovatky zi znyzhenym vmistom laktozy. Rozvytok kharchovykh vyrobnytstv, restorannoho ta hotelnoho hospodarstv i torhivli: problemy, perspektyvy, efektyvnist. Kharkiv, 1, 120–121.
- Hnitsevych, V. A., Honchar, Yu. M. (2018). Investigation the process of fermentation of pumpkin pulp. Naukovi pratsi NUKhT, 24 (2), 203–208.
- DSTU 4487:2015 Maionezy ta maionezni sousy. Zahalni tekhnichni umovy (2015). Available at: https://online.budstandart.com/ua/catalog/doc-page?id_doc=84515
- Gnitsevych, V. A., Honchar, Yu. M. (2022). Technology and properties of low-lactose semi-finished product based on sweet milk whey. Innovative technologies and equipment: development prospects of the food and restaurant industries. Riga: «Baltija Publishing», 118–136. https://doi.org/10.30525/978-9934-26-205-0-6
- Hutsol, T., Priss, O., Kiurcheva, L., Serdiuk, M., Panasiewicz, K., Jakubus, M., Barabasz, W. et al. (2023). Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger. Sustainability, 15 (15), 11648. https://doi.org/10.3390/su151511648
- Dunn, J., Brunner, T., Legeza, D., Konovalenko, A., Demchuk, O. (2018). Factors of the marketing macro system effecting children's food production. Economic Annals-ХХI, 170 (3-4), 49–56. https://doi.org/10.21003/ea.v170-09
- Lystopad, T. S. (2021). Development of technology of sauces from wild and cultivated berries with iodine-containing additives [Doctoral dissertation; State Biotechnological University]. Available at: https://biotechuniv.edu.ua/wp-content/uploads/2021/12/Lystopad-dysertatsiya.pdf
- Maoloni, A., Cardinali, F., Milanović, V., Garofalo, C., Osimani, A., Mozzon, M., Aquilanti, L. (2022). Microbiological safety and stability of novel green sauces made with sea fennel (Crithmum maritimum L.). Food Research International, 157, 111463. https://doi.org/10.1016/j.foodres.2022.111463
- Chavasit, V., Photi, J.; Venkatesh Mannar, M. G. (Ed.) (2018). Condiments and sauces. Food fortification in a globalized world. Academic Press, 153–158. https://doi.org/10.1016/b978-0-12-802861-2.00015-8
- DSP 4.4.5.078-2001 Mikrobiolohichni normatyvy ta metody kontroliu produktsii hromadskoho kharchuvannia (2001). Resolution of the Chief State Sanitary Doctor of Ukraine No. 139. 07.11.2001. Kyiv. Available at: https://budinfo.org.ua/doc/1816420/DSP-4-4-5-078-2001-Mikrobiologichni-normativi-ta-metodi-kontroliu-produktsii-gromadskogo-kharchuvannia/
- Poyil, T., Rasane, P., Singh, J., Kaur, S., Kaur, J., Gunjal, M. et al. (2023). Bioactive Compounds of Mustard, its Role in Consumer Health and in the Development of Potential Functional Foods. Current Nutrition & Food Science, 19 (9), 950–960. https://doi.org/10.2174/1573401319666230309151954
- Priss, O., Korchynskyy, I., Kryvko, Y., Korchynska, O. (2023). Leveraging Horseradish's Bioactive Substances for Sustainable Agricultural Development. International Journal of Sustainable Development and Planning, 18 (8), 2563–2570. https://doi.org/10.18280/ijsdp.180828
- Standard for Chili Sauce. CXS 306-2023 (2023). Available at: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B306-2023%252FCXS_306e.pdf
- Bosland, P. W., Bailey, A. L., Iglesias-Olivas, J. (1990). Capsicum pepper varieties and classification. Cooperative Extension Service. Circular 530. Las Cruces: New Mexico State University.
- Madala, N., Nutakki, M. K. (2020). Hot Pepper – History- Health and Dietary Benefits & Production. International Journal of Current Microbiology and Applied Sciences, 9 (4), 2532–2538. https://doi.org/10.20546/ijcmas.2020.904.303
- Mohammadi, M., Sardarodiyan, M., Salehi, E. A., Baghan, E. E. (2020). Investigating the antioxidant properties of iranian chili pepper extract. Food Science and Technology, 14 (1), 63–69. https://doi.org/10.15673/fst.v14i1.1641
- Nout, M. J. R. (2014). Food Technologies: Fermentation. Encyclopedia of Food Safety. Waltham: Academic Press, 168–177. https://doi.org/10.1016/b978-0-12-378612-8.00270-5
- Fermented Vegetables and Fruits (2016). Food Microbiology: Principles into Practice, 313–348. https://doi.org/10.1002/9781119237860.ch42
- Cho, S., Kim, J.-M., Yu, M.-S., Yeon, S.-J., Lee, C.-H., Kim, S.-K. (2015). Fermentation of hot pepper juice by Bacillus licheniformis to reduce pungency. Journal of the Korean Society for Applied Biological Chemistry, 58 (4), 611–616. https://doi.org/10.1007/s13765-015-0078-y
- Lebedenko, T., Krusir, G., Shunko, H., Korkach, H. (2021). Development of technology of sauces with functional ingredients for restau-rants. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 23 (95), 57–64. https://doi.org/10.32718/nvlvet-f9510
- Hernández-Carrión, M., Sanz, T., Hernando, I., Llorca, E., Fiszman, S. M., Quiles, A. (2015). New formulations of functional white sauces enriched with red sweet pepper: a rheological, microstructural and sensory study. European Food Research and Technology, 240 (6), 1187–1202. https://doi.org/10.1007/s00217-015-2422-1
- Raising Geese: Best Steps For High Profits (2023). Roys Farm. Available at: https://www.roysfarm.com/raising-geese/?nowprocket=1
- Kushch, M. M., Kushch, L. L., Byrka, E. V., Yaremchuk, O. S. (2019). Morphological features of the jejunum and ileum of the middle and heavy goose breeds. Ukrainian Journal of Ecology, 9 (4), 690–694. https://doi.org/10.15421/2019_811
- Orkusz, A., Wolańska, W., Krajinska, U. (2021). The Assessment of Changes in the Fatty Acid Profile and Dietary Indicators Depending on the Storage Conditions of Goose Meat. Molecules, 26 (17), 5122. https://doi.org/10.3390/molecules26175122
- Amaral, A. B., Silva, M. V. da, Lannes, S. C. da S. (2018). Lipid oxidation in meat: mechanisms and protective factors – a review. Food Science and Technology, 38 (1), 1–15. https://doi.org/10.1590/fst.32518
- Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants, 8 (10), 429. https://doi.org/10.3390/antiox8100429
- Shen, M. M., Zhang, L. L., Chen, Y. N., Zhang, Y. Y., Han, H. L., Niu, Y. Et al. (2019). Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poultry Science, 98 (12), 6787–6796. https://doi.org/10.3382/ps/pez404
- Kwiecień, M., Winiarska-Mieczan, A., Danek-Majewska, A., Kwiatkowska, K., Krusiński, R. (2021). Effects of dietary alfalfa protein concentrate on lipid metabolism and antioxidative status of serum and composition and fatty acid profile and antioxidative status and dietetic value of muscles in broilers. Poultry Science, 100 (4), 100974. https://doi.org/10.1016/j.psj.2020.12.071
- Danchenko, O. O., Nicolaeva, Y. V., Koshelev, O. I., Danchenko, M. M., Yakoviichuk, O. V., Halko, T. I. (2021). Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese. Regulatory Mechanisms in Biosystems, 12 (2), 307–314. https://doi.org/10.15421/022141
- Muzolf-Panek, M., Kaczmarek, A., Tomaszewska-Gras, J., Cegielska-Radziejewska, R., Majcher, M. (2019). Oxidative and microbiological stability of raw ground pork during chilled storage as affected by Plant extracts. International Journal of Food Properties, 22 (1), 111–129. https://doi.org/10.1080/10942912.2019.1579834
- Kim, I.-S., Hwang, C.-W., Yang, W.-S., Kim, C.-H. (2021). Multiple Antioxidative and Bioactive Molecules of Oats (Avena sativa L.) in Human Health. Antioxidants, 10 (9), 1454. https://doi.org/10.3390/antiox10091454
- Xie, X., Lin, M., Xiao, G., Liu, H., Wang, F., Liu, D. et al. (2024). Phenolic amides (avenanthramides) in oats – an update review. Bioengineered, 15 (1). https://doi.org/10.1080/21655979.2024.2305029
- de Bruijn, W. J. C., van Dinteren, S., Gruppen, H., Vincken, J.-P. (2019). Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry, 277, 682–690. https://doi.org/10.1016/j.foodchem.2018.11.013
- Riabokon, Iu. A. (Ed.) (2005). Rekomendatcii po normirovaniiu kormleniia selskokhoziaistvennoi ptitcy. Borki: Institut ptitcevodstva Ukrainskoi akademii agrarnykh nauk, 101.
- Yonov, Y. A., Shapovalov, S. O., Rudenko, E. V. (2011). Kriterii i metody kontrolia metabolizma v organizme zhivotnykh i ptitc. Kharkiv, 376.
- Danchenko, O. O., Pashchenko, Yu. P., Danchenko, N. M., Zdorovtseva, L. M. (2012). Mechanis of support prooxidant-antioxidant balance in the liver tissues of geese in hypo- and hyperoxia. Ukrainskyi biokhimichnyi zhurnal, 6, 109–114.
- Palmer, F. B. St. C. (1971). The extraction of acidic phospholipids in organic solvent mixtures containing water. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 231 (1), 134–144. https://doi.org/10.1016/0005-2760(71)90261-x
- Antipova, L. V., Glotova, I. A., Rogov, I. A. (2001). Metody issledovaniia miasa i miasnykh produktov. Moscow: Kolos, 576.
- Tsviakh, O. O. (2022). Metody laboratornoi diahnostyky. Mykolaiv: Vydavets Rumiantseva H. V., 40.
- Surai, P. F., Ionov, I. A. (1990). Biokhimicheskie metody kontrolia metabolizma v organakh ptitc i ikh vitaminnaia obespechennost. Kharkiv: Mriia, 138.
- Bal-Prilipko, L. V., Zadorozhnyi, V. I., Onishchenko, L. V. (2006). Vliianie razlichnykh faktorov na srok i kachestvo khraneniia miasnykh produktov. Miasnoe delo, 8, 53–55.
- Danchenko, O., Zdorovtseva, L., Vishchur, O., Koshelev, О., Halko, T., Danchenko, M. et al. (2020). Extract of oats as a modulator of fatty acid composition of geese tissues in the conditions of physiological stress. Biologija, 66 (1), 27–34. https://doi.org/10.6001/biologija.v66i1.4188
- Mahfuz, S., Shang, Q., Piao, X. (2021). Phenolic compounds as natural feed additives in poultry and swine diets: a review. Journal of Animal Science and Biotechnology, 12 (1). https://doi.org/10.1186/s40104-021-00565-3
- Lee, S., Jo, K., Jeong, H. G., Choi, Y.-S., Kyoung, H., Jung, S. (2022). Freezing-induced denaturation of myofibrillar proteins in frozen meat. Critical Reviews in Food Science and Nutrition, 64 (5), 1385–1402. https://doi.org/10.1080/10408398.2022.2116557
- Li, H., Liu, Y., Wei, L., Lin, Q., Zhang, Z. (2022). Effects of Feeding Fermented Medicago sativa (Plus Soybean and DDGS) on Growth Performance, Blood Profiles, Gut Health, and Carcass Characteristics of Lande (Meat) Geese. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.902802
- Maiboroda, D. O., Danchenko, O. O., Zdorovtseva, L. M., Fedorko, A. S., Danchenko, M. M., Zahorko, N. P. (2020). Oat extract as a technological means for improving the quality of geese meat. Proceedings of the Tavria State Agrotechnological University, 20 (1), 203–212. https://doi.org/10.31388/2078-0877-20-1-203-212
- Scollan, N. D., Price, E. M., Morgan, S. A., Huws, S. A., Shingfield, K. J. (2017). Can we improve the nutritional quality of meat? Proceedings of the Nutrition Society, 76 (4), 603–618. https://doi.org/10.1017/s0029665117001112
- Sun, Y., Hou, T., Yu, Q., Zhang, C., Zhang, Y., Xu, L. (2023). Mixed oats and alfalfa improved the antioxidant activity of mutton and the performance of goats by affecting intestinal microbiota. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1056315
- del Puerto, M., Cabrera, M. C., Saadoun, A. (2017). A Note on Fatty Acids Profile of Meat from Broiler Chickens Supplemented with Inorganic or Organic Selenium. International Journal of Food Science, 2017, 1–8. https://doi.org/10.1155/2017/7613069
- Boschetti, E., Bordoni, A., Meluzzi, A., Castellini, C., Dal Bosco, A., Sirri, F. (2016). Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal, 10 (4), 700–708. https://doi.org/10.1017/s1751731115002712
- Li, J., Zhang, S., Gu, X., Xie, J., Zhu, X., Wang, Y., Shan, T. (2022). Effects of alfalfa levels on carcass traits, meat quality, fatty acid composition, amino acid profile, and gut microflora composition of Heigai pigs. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.975455
- Opanasenko, M. M., Kalitka, V. V., Danchenko, O. O. (2010) Stan fermentativnoi lanki sistemi antioksidantnogo zakhistu m'yasa ptitsі za nizkotemperaturnogo zberіgannya. Tekhnologіya virobnitstva і pererobki produktsіi tvarinnitstva, 2 (70), 85–89.
- Xue, Y., Teng, Y., Chen, M., Li, Z., Wang, G. (2021). Antioxidant Activity and Mechanism of Avenanthramides: Double H+/e– Processes and Role of the Catechol, Guaiacyl, and Carboxyl Groups. Journal of Agricultural and Food Chemistry, 69 (25), 7178–7189. https://doi.org/10.1021/acs.jafc.1c01591
- Provesi, J. G., Dias, C. O., Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128 (1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027
- Batal, A., Dale, N. (2019) Feedstuffs ingredient analysis table. Athens: University of Georgia.
- 1. Elmarhoum, S., Mathieu, S., Ako, K., Helbert, W. (2023). Sulfate groups position determines the ionic selectivity and syneresis properties of carrageenan systems. Carbohydrate Polymers, 299, 120166. https://doi.org/10.1016/j.carbpol.2022.120166
- Souza, H. K. S., Kraiem, W., Ben Yahia, A., Aschi, A., Hilliou, L. (2023). From Seaweeds to Hydrogels: Recent Progress in Kappa-2 Carrageenans. Materials, 16 (15), 5387. https://doi.org/10.3390/ma16155387
- Anggraini, J., Lo, D. (2023). Health impact of carrageenan and its application in food industry: a review. IOP Conference Series: Earth and Environmental Science, 1169(1), 012098. https://doi.org/10.1088/1755-1315/1169/1/012098
- Udo, T., Mummaleti, G., Mohan, A., Singh, R. K., Kong, F. (2023). Current and emerging applications of carrageenan in the food industry. Food Research International, 173 (2), 113369. https://doi.org/10.1016/j.foodres.2023.113369
- Gomez, L. P., Alvarez, C., Zhao, M., Tiwari, U., Curtin, J., Garcia-Vaquero, M., Tiwari, B. K. (2020). Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydrate Polymers, 248, 116784. https://doi.org/10.1016/j.carbpol.2020.116784
- van de Velde, F., Peppelman, H. A., Rollema, H. S., Tromp, R. H. (2001). On the structure of κ/ι-hybrid carrageenans. Carbohydrate Research, 331 (3), 271–283. https://doi.org/10.1016/s0008-6215(01)00054-4
- van de Velde, F. (2008). Structure and function of hybrid carrageenans. Food Hydrocolloids, 22 (5), 727–734. https://doi.org/10.1016/j.foodhyd.2007.05.013
- Villanueva, R. D., Mendoza, W. G., Rodrigueza, M. R. C., Romero, J. B., Montaño, M. N. E. (2004). Structure and functional performance of gigartinacean kappa–iota hybrid carrageenan and solieriacean kappa–iota carrageenan blends. Food Hydrocolloids, 18 (2), 283–292. https://doi.org/10.1016/s0268-005x(03)00084-5
- Stancioff, D. J. (1981). Reflections on the interrelationships between red seaweed source chemistry and uses. International Seaweed Symposium (Xth), 113–122. https://doi.org/10.1515/9783110865271-009
- Guibet, M., Boulenguer, P., Mazoyer, J., Kervarec, N., Antonopoulos, A., Lafosse, M., Helbert, W. (2007). Composition and Distribution of Carrabiose Moieties in Hybrid κ-/ι-Carrageenans Using Carrageenases. Biomacromolecules, 9 (1), 408–415. https://doi.org/10.1021/bm701109r
- Hilliou L. (2014). Hybrid carrageenans: isolation, chemical structure, and gel properties. Advances in Food and Nutrition Research, 72. 17–43. https://doi.org/10.1016/b978-0-12-800269-8.00002-6
- Nguyen, B. T., Nicolai, T., Benyahia, L., Chassenieux, C. (2014). Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydrate Polymers, 112, 10–15. https://doi.org/10.1016/j.carbpol.2014.05.048
- Geonzon, L. C., Descallar, F. B. A., Du, L., Bacabac, R. G., Matsukawa, S. (2020). Gelation mechanism and network structure in gels of carrageenans and their mixtures viewed at different length scales – A review. Food Hydrocolloids, 108, 106039. https://doi.org/10.1016/j.foodhyd.2020.106039
- Piculell, L., Nilsson, S., Muhrbeck, P. (1992). Effects of small amounts of kappa-carrageenan on the rheology of aqueous iota-carrageenan. Carbohydrate Polymers, 18 (3), 199–208. https://doi.org/10.1016/0144-8617(92)90064-w
- Jiang, J.-L., Zhang, W.-Z., Ni, W.-X., Shao, J.-W. (2021). Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydrate Polymers, 257, 117642. https://doi.org/10.1016/j.carbpol.2021.117642
- Hilliou, L. (2021). Structure–Elastic Properties Relationships in Gelling Carrageenans. Polymers, 13 (23), 4120. https://doi.org/10.3390/polym13234120
- Yang, Z., Hemar, Y., Hilliou, L., Gilbert, E. P., McGillivray, D. J., Williams, M. A. K., Chaieb, S. (2015). Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules, 17 (2), 590–600. https://doi.org/10.1021/acs.biomac.5b01538
- Robal, M., Brenner, T., Matsukawa, S., Ogawa, H., Truus, K., Rudolph, B., Tuvikene, R. (2017). Monocationic salts of carrageenans: Preparation and physico-chemical properties. Food Hydrocolloids, 63, 656–667. https://doi.org/10.1016/j.foodhyd.2016.09.032
- Fauzi, M. A. R. D., Pudjiastuti, P., Wibowo, A. C., & Hendradi, E. (2021). Preparation, properties and potential of carrageenan-based hard capsules for replacing gelatine: A review. Polymers, 13 (16), 2666. doi: https://doi.org/10.1016/j.foodhyd.2016.09.032
- Brief History of Regulatory & Scientific Determinations on Carrageenan (2024). MonthlyArchives. Available at: https://marinalg.org/2024/01/
- Xie, X.-T., Zhang, X., Liu, Y., Chen, X.-Q., Cheong, K.-L. (2020). Quantification of 3,6-anhydro-galactose in red seaweed polysaccharides and their potential skin-whitening activity. 3 Biotech, 10 (4). https://doi.org/10.1007/s13205-020-02175-8
- Horalchuk, A. B., Pyvovarov, P. P., Hrynchenko, O. O., Pohozhykh, M. I., Polevych, V. V., Hurskyi, P. V. (2006). Rheological methods of raw foods and automation of payments rheological characteristics. Kharkiv: KhDUKhT, 63. https://doi.org/10.13140/RG.2.1.2739.7847
- Resnytskiy, I., Ishchenko, O., Plavan, V., Koliada, M., Valeika, V. (2019). Effect of rheological properties of composition based on modified starch on film formation. IOP Conference Series: Materials Science and Engineering, 500, 012033. https://doi.org/10.1088/1757-899x/500/1/012033
- Cherevko, О., Mykhailov, V., Maiak, V., Maiak, О. (2014). Reolohiia v protsesakh vyrobnytstva kharchovykh produktiv. P. 1. Klasyfikatsiia ta kharakterystyka neniutonivskykh ridyn. Kharkiv, 244.
- Hilliou, L. (2021). Structure-Elastic Properties Relationships in Gelling Carrageenans. Polymers, 13 (23), 4120. https://doi.org/10.3390/polym13234120