Histopathology data of bone marrow biopsies (HistBMP or HistMNIST)
Description
Data information
We prepared a dataset basing on histopathological images freely available on-line (http://www.enjoypath.com/). We selected 16 patients (patient IDs: 272, 274, 283, 289, 290, 291, 292, 295, 297, 298, 299). Each histopathological image represents a bone marrow biopsy. Diagnoses of the chosen cases were associated with different kinds of cancer (e.g., lymphoma, leukemia) or anemia. All original images were taken using HE, 40×, and each image was of size 336 × 448.
Data preparation
The original RGB representation was transformed to gray scale. Further, we divided each image into small patches of size 28 × 28. Eventually, we picked 10 patients for training, 3 patients for validation and 3 patients for testing, which resulted in 6,800 training images, 2,000 validation images and 2,000 test images. The selection of patients was performed in such a fashion that each dataset contained representative images with different diagnoses and amount of fat.
Since the small patches resemble a widely-used benchmark in machine learning/AI community called MNIST, the dataset is referred to as HistMNIST.
First usage
The dataset was used to train deep generative models (VAEs):
- Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. arXiv preprint arXiv:1611.09630.
Notes
Files
Files
(59.1 MB)
Name | Size | Download all |
---|---|---|
md5:c6be7a98aeee14eb32fc8db2d2298bce
|
59.1 MB | Download |
Additional details
Funding
References
- Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. arXiv preprint arXiv:1611.09630.