Published June 10, 2024 | Version 1.0
Software Open

LAISS: Lightcurve Anomaly Identification and Similarity Search

  • 1. ROR icon University of Illinois Urbana-Champaign
  • 2. ROR icon National Center for Supercomputing Applications
  • 1. ROR icon Pacific Northwest National Laboratory
  • 2. ROR icon University of Illinois Urbana-Champaign
  • 3. ROR icon National Center for Supercomputing Applications
  • 4. ROR icon University of Copenhagen
  • 5. ROR icon Queen's University Belfast
  • 6. ROR icon Carnegie Mellon University
  • 7. ROR icon University of California, Santa Cruz
  • 8. ROR icon University of Melbourne
  • 9. ROR icon Washington State University
  • 10. University of Hawaii
  • 11. ROR icon University of Cambridge
  • 12. ROR icon NSF’s NOIRLab
  • 13. ROR icon The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
  • 14. ROR icon Center for Astrophysics Harvard & Smithsonian
  • 15. ROR icon Space Telescope Science Institute
  • 16. ROR icon University of Hawaii at Hilo
  • 17. ROR icon University of Southampton

Description

This is the official Zenodo version of the code LAISS (Lightcurve Anomaly Identification and Similarity Search), associated with the paper, "Anomaly Detection and Approximate Similarity Searches of Transients in Real-time Data Streams" by Aleo et al (in review). This repository contains all datasets and code needed to run a local instance of LAISS, though slight modifications will be needed (e.g., renaming hard-coded file paths). See Aleo et al. for details on the LAISS pipeline, now on arXiv and currently submitted to The Astrophysical Journal. The live version of the code can be found on Github.

Moreover, the results of all objects processed by LAISS via the ANTARES broker is available on the main page and selecting “LAISS_RFC_AD_filter” under ‘Tags’. Those we consider anomalies are objects that have a Locus Property feature “LAISS_RFC_anomaly_score” > 0.5. Note that the version on ANTARES has no similarity search functionality.

A demo can be found on Google Colab, written by current code maintainer Alex Gagliano.

Below we list the files with a brief description:

"LAISS_ANNOY_pseudo_Filter.ipynb" -- The notebook version of LAISS. Preferred method because it doesn't need to reload the large .ann files for each instance.

"LAISS.py" -- The .py version of LAISS. Same functionality but a little slower because of the many arguments and longer runtimes due to needing to reload the .ann files for each run. Can be run, e.g., with

LAISS(l_or_ztfid_ref="ZTF18abydmfv",
           lc_and_host_features=lc_and_host_features,
           n=8,
           use_lc_for_ann_only_bool=True, 
           use_ysepz_phot_snana_file=False,
           show_lightcurves_grid=False,
           show_hosts_grid=False,
           run_AD_model=False,
           savetables=False,
           savefigs=False)

"*.ann" & "*.npy"-- The ANNOY index files, used for similarity search functionality.

"*.csv.gz" -- Datafiles with objects (rows) and light curve + host features (columns), used for anomaly detection and similarity search functionality.

NOTE: With either choice of running LAISS, you'll need to add the following hardcoded directories (or manually change the filepaths). See Github for directory structure:

tables/custom/timeseries/
notebooks/ysepz_snana_phot_files/
notebooks/LAISS_run/
loci_dbs/alerce_cut/
ps1_psc/
ps1_cutouts/
dataframes/
RFC/SMOTE_train_test_70-30_min14_kneighbors8/cls=binary_n_estimators=100_max_depth=35_rs=11_max_feats=35_cw=balanced/figures
RFC/SMOTE_train_test_70-30_min14_kneighbors8/cls=binary_n_estimators=100_max_depth=35_rs=11_max_feats=35_cw=balanced/model

Files

LAISS_ANNOY_pseudo_Filter.ipynb

Files (1.7 GB)

Name Size Download all
md5:0c717a620a54e507e82ca4025f48b306
5.5 MB Download
md5:76cbc93181775bc36f5ffbab498ead8c
1.1 GB Download
md5:e0341edf6cab68d1d8dd296ed93419dd
2.0 MB Download
md5:0266617228db92a8e5e17bab72b576d4
131.7 MB Download
md5:e0341edf6cab68d1d8dd296ed93419dd
2.0 MB Download
md5:1ed5c0b528a9a6cb36fd73140c55f482
7.3 MB Download
md5:f6cec7c3336c632e17d8b2691a1d767f
18.7 MB Download
md5:639e17b2b9afd2a0f78d7782203a16a0
65.6 MB Download
md5:cdfc13a6f62f1418b01b2a4abadd64c8
5.3 MB Download
md5:f50338acf2ebd238cca50b33598d7b2e
5.3 MB Download
md5:cf4f77ed721420e7c8e4651c23c7723f
2.6 MB Download
md5:9527ddbfa110bc253714b0f05aa407af
120.0 kB Download
md5:8041b38b8976175913afc2e89459ef01
67.6 MB Download
md5:9527ddbfa110bc253714b0f05aa407af
120.0 kB Download
md5:bcace24dc2c0abc62c0c57f599ab1347
5.4 MB Download
md5:66f1601e8beb3b54016cc16e74f3fb1a
17.5 MB Download
md5:9073d02a6c64cdae14f0b4c652f479c8
1.6 MB Download
md5:ebe6ec38f57dff1e789bece6123fbdbb
34.6 MB Download
md5:5ad079d76cfd15f09ed53b058e452fc3
607 Bytes Download
md5:b31363f904028ba60c78178bf28fe619
81.7 kB Download
md5:f6cab9baa61263707d3e9ac844c0fffd
669.4 kB Preview Download
md5:66eda2d554858ca341d89c7de5b1f179
201.7 MB Preview Download

Additional details

Related works

Is part of
Journal article: arXiv:2404.01235 (arXiv)

Software

Repository URL
https://github.com/patrickaleo/LAISS-local
Programming language
Python
Development Status
Active