Published September 25, 2023 | Version v1
Conference paper Open

An AI Chatbot for Explaining Deep Reinforcement Learning Decisions of Service-Oriented Systems

  • 1. ROR icon University of Duisburg-Essen


Deep Reinforcement Learning (Deep RL) is increasingly used to cope with the open-world assumption in service-oriented systems. Deep RL was successfully applied to problems such as dynamic service composition, job scheduling, and service adaptation. While Deep RL offers many benefits, understanding the decision-making of Deep RL is challenging because the action-selection policy that underlies its decision-making essentially appears as a black box. Yet, understanding the decision-making of Deep RL is key to help service developers perform debugging, support service providers to comply with relevant legal frameworks, and facilitate service users to build trust. We introduce Chat4XAI to provide natural-language explanations of the decision-making of Deep RL. Compared with visual explanations, the reported benefits of natural-language explanations include better understandability for non-technical users, increased user acceptance, and more efficient explanations. Chat4XAI leverages modern AI chatbot technology and dedicated prompt engineering. Compared to earlier work on natural-language explanations using classical software-based dialogue systems, using an AI chatbot eliminates the need for eliciting and defining potential questions and answers up-front. We prototypically realize Chat4XAI using OpenAI’s ChatGPT API and evaluate the fidelity and stability of its explanations using an adaptive service exemplar.



Files (796.6 kB)

Name Size Download all
796.6 kB Preview Download