Published June 7, 2024 | Version 1.2
Dataset Open

Historical Reconstruction Dataset of Hourly Expected On-Shore Wind Generation in Japan

  • 1. Waseda University
  • 2. Central Research Institute of Electric Power Industry

Description

Description

This is a historical reconstruction dataset of hourly expected wind generation based on dynamically downscaled atmospheric reanalysis for assessing the spatio-temporal impact of on-shore wind in Japan.

The dataset consists of a set of netCDF files with yearly archives of reconstruction results from 1958 to 2012; hourly expected on-shore wind power potential in Japan with a spatial resolution of approximately 5 km mesh has been reconstructed from the numerical weather model reanalysis results. The expected per-unit output values at each location were calibrated using a nonparametric machine learning model that learns statistical relationships between spatial/meteorological features of target locations and actual wind farm outputs.

A convenient way to handle this dataset would be to use a tool for manipulating netCDF files, such as CDO: Climate Data Operators.

Associated Publication

  • Yu Fujimoto, Masamichi Ohba, Yujiro Tanno, Daisuke Nohara, Yuki Kanno, Akihisa Kaneko, Yasuhiro Hayashi, Yuki Itoda, and Wataru Wayama, "Historical Reconstruction Dataset of Hourly Expected Wind Generation Based on Dynamically Downscaled Atmospheric Reanalysis for Assessing Spatio-Temporal Impact of On-Shore Wind in Japan", Big Earth Data, doi: 10.1080/20964471.2024.2374044 

Version history

  • Ver. 1.0: Released.
  • Ver. 1.1: The preprocessing of the source information used for dataset preparation has changed.
  • Ver. 1.2: The hyperparameter tuning scheme for the post-processing model has changed.

Notes

The reanalysis data used to generate this reconstruction dataset were provided by the Japan Meteorological Agency.

  • Kayaba, N. et al. (2016): Dynamical Regional Downscaling Using the JRA-55 Reanalysis (DSJRA-55). SOLA, 12, 1-5. http://doi.org/10.2151/sola.2016-001.

Files

readme.pdf

Files (29.1 GB)

Name Size Download all
md5:2f24b5e1440c3732bf52e0f798f83957
223.0 kB Preview Download
md5:dac218e7b5224661c25daea83c530ec2
528.7 MB Download
md5:fe9d5838bbecbc89110d50d723ccce14
528.8 MB Download
md5:63dfa66b34284f1fb35b0e4c721cd5a8
530.2 MB Download
md5:9b56be5073a35249b56745930ae2b5ce
528.8 MB Download
md5:782089d59182aa73b52473fde36bce18
528.8 MB Download
md5:f5c1e4bbc747c2bd80a05fa6b50a506c
528.8 MB Download
md5:10cd0545e9e288f1455b973895c80d27
530.2 MB Download
md5:1017d1b0a535a49ff2a9c287535d257f
528.9 MB Download
md5:bec8729f7cdacedac8032d297a63e309
528.8 MB Download
md5:eb52f4e32b56403025809f3135d1573f
528.8 MB Download
md5:03621f0940dda652f385e6a0cb2811d6
530.2 MB Download
md5:f58023d58e46a035308af62f9789c16e
528.9 MB Download
md5:84c5f21b30816b6c0c0e6eebe04f7400
528.8 MB Download
md5:18a43dcb2d79273de3d170fce716c0b2
528.8 MB Download
md5:93c591b0978659405c43f07cc900f6b8
530.0 MB Download
md5:f45ed44a76e6d6b9bf0f590659ac004c
528.7 MB Download
md5:40a640ef7a684ac13da5a7d7459eb7f0
528.7 MB Download
md5:64c3512f41484820c7f4e341fbe45025
528.7 MB Download
md5:dcf2ed952f5f63e741ebce7d84d30d98
530.1 MB Download
md5:793ac09d39b6afb3f415d2bde1f427a8
528.7 MB Download
md5:c69631a3bf8007dbb7aa96dcdf00c12e
528.7 MB Download
md5:1e576cef692cc6fc5237d08ab27abb75
528.9 MB Download
md5:1f56c5c05b420891737005ca8dc9bbec
530.1 MB Download
md5:83929c87b90301eb9b22b49e23bb697c
528.8 MB Download
md5:94b1a7ead177ec4bab06c601f2907d60
528.7 MB Download
md5:258fa1aa273261c76c8cb4618cbc1a62
528.8 MB Download
md5:98a83a494315c35c5ba12b271083974c
530.1 MB Download
md5:04be9fb8dffff6fc26ad31de0b830351
528.9 MB Download
md5:2cf69907a9bb5a76bdcb70db9481e913
528.8 MB Download
md5:035f5f3dba447c672982274663906453
528.9 MB Download
md5:23ca3e8626d3b473350897d901474507
530.2 MB Download
md5:b3090ce738b63a59efdca2979a738ae7
528.7 MB Download
md5:539f9be429177648fb35575095758ba9
528.7 MB Download
md5:e83300d347a38d11dba76aab0589b3a7
528.9 MB Download
md5:076ab8600ceef29b6bb27964925c266c
530.3 MB Download
md5:0dd1c154f026d97267b04cec9de4adb7
528.8 MB Download
md5:35af71f7dec47e6c9aa262df8d1cedf6
528.7 MB Download
md5:0db501f7612a1c555622e7df519e1bec
528.8 MB Download
md5:0c8bc2dfc150d7d1e23835bbfcb4fe00
530.3 MB Download
md5:4a56b408678ded30782417991ce79888
528.8 MB Download
md5:1c87da143226730be4ee30f2ae7e4c2c
528.9 MB Download
md5:7226db96eb0ef94a29c2bbab8708531e
528.8 MB Download
md5:ac96f6a41bbc24e4b17ad406a5a2da33
530.2 MB Download
md5:1b73ced0d9ca1212c4d7678719f6be0a
528.8 MB Download
md5:4e2d59f29bfcf3328aaecbd99e95ca94
528.8 MB Download
md5:e69fba4b971257839cd7ac72a13cbf81
528.7 MB Download
md5:d16e038909bd9166d434d49e9d6d927b
530.3 MB Download
md5:4452c260578a59f2f45786a760fc2a02
528.8 MB Download
md5:3614094cb2f8d0f5873cc58fdb99b6dd
528.8 MB Download
md5:e9883f617bd66d11c176a0b8631c38a9
528.8 MB Download
md5:0c44da07cf8e3daef84838b00baab429
530.3 MB Download
md5:e505abc38197cbcda762dfebdd9e8ab5
528.7 MB Download
md5:283472e8a1825af4f74c74420bbe6d44
528.8 MB Download
md5:1bba8359564275d307c176e1d2a72fc6
528.8 MB Download
md5:f468cb47aa71f8ba1e3a95c4c48e1416
530.1 MB Download

Additional details

Related works

Is published in
Journal: 10.1080/20964471.2024.2374044 (DOI)

References

  • Yu Fujimoto, Masamichi Ohba, Yujiro Tanno, Daisuke Nohara, Yuki Kanno, Akihisa Kaneko, Yasuhiro Hayashi, Yuki Itoda, and Wataru Wayama. (2024): Historical Reconstruction Dataset of Hourly Expected Wind Generation Based on Dynamically Downscaled Atmospheric Reanalysis for Assessing Spatio-Temporal Impact of On-Shore Wind in Japan. Big Earth Data. http://doi.org/10.1080/20964471.2024.2374044