Gliridae Muirhead 1819
Authors/Creators
Description
Gliridae Muirhead 1819
Gliridae Muirhead 1819, Mazology [sic]. Pp. 393-480, pls. 353-358, in: Edinburgh Encyclopdeia, Vol. 13 (D. Brewster, ed): 433 (see McKenna and Bell, 1997).
Synonyms: Glirini Muirhead 1819; Gliroidea Simpson 1945; Leithiidae Lydekker 1895; Muscardinidae Palmer 1899; Myoxidae Zimmerman 1780; Myosidae Gray 1821; Myoxina Gray 1825; Myoxidae Waterhouse 1839; Myoxini Giebel 1855; Myoxida Haekel 1866; Myoxoidea Gill 1872; Seleviniidae Bashanov and Belosludov 1939.
Genera: 9 genera with 28 species in 3 subfamilies:
Subfamily Graphiurinae Winge 1887
Genus Graphiurus Smuts 1832 (14 species)
Subfamily Leithiinae Lydekker 1895
Genus Chaetocauda Wang 1985 (1 species)
Genus Dryomys Thomas 1905 (3 species)
Genus Eliomys Wagner 1840 (3 species)
Genus Muscardinus Kaup 1829 (1 species)
Genus Myomimus Ognev 1924 (3 species)
Genus Selevinia Belosludov and Bazhanov 1939 (1 species)
Subfamily Glirinae Muirhead 1819
Genus Glirulus Thomas 1905 (1 species)
Genus Glis Brisson 1762 (1 species)
Discussion: Simpson (1945) deemed Myoxidae Gray, 1821 invalid due to the apparent synonymy of the type genus Myoxus Zimmermann, 1790, with Glis Brisson, 1762, and used Gliridae Thomas, 1896. Hopwood (1947) argued that Brisson’s names are invalid because they are not Linnaean or binomial, and noted that Glis is valid in Erxleben (1777) for marmots, ground-squirrels, voles, and lemmings, rendering Glis Storr, 1780 (which included pedetids, dormice, and other rodents) invalid. Thus the oldest available name to replace Glis Brisson is Myoxus Zimmerman, valid in Linnaeus (1788) for dormice, and, but for the ruling discussed below, the correct family name for dormice would be Myoxidae. Despite this clear historical evidence given in support of recognizing Myoxidae as the valid family name for dormice (see also Wahlert et al., 1993), and despite the willingness of many dormouse experts to employ Myoxidae as the valid family name (Hutterer, 1996; and usage of Myoxidae in Filippucci, 1995), the unfortunate ruling by the International Commission on Zoological Nomenclature (1998) to conserve Glis Brisson requires that the valid family name for dormice is henceforth Gliridae.
Glirids are one of the oldest extant rodent families. They first appear as fossils in early Eocene deposits (Daams, 1999; Daams and De Bruijn, 1995; Uhlig, 2001), suggesting a late Paleocene-early Eocene origin (Hartenberger 1994, 1998), which is concordant with the most recent molecular dating estimate based upon combined markers (Adkins et al., 2003; Huchon et al., 2002). Gnaw marks made by the extinct Eocene glirid Glamys were discovered on fossilized Eocene seeds of a freshwater aquatic floating plant, providing evidence of early glirid behavior (Collinson and Hooker, 2000). Early middle Eocene sediments in Germany have yielded a perfectly preserved Eogliravus wildi (Storch et al., 2000; Storch and Seiffert, 2002) represented by a completely articulated skeleton, soft body outline of pelage over body and tail, gut contents, and baculum. Apparently, E. wildi was agile, arboreal, and fed predominantly on seeds, fruits and buds (Storch et al., 2000; Storch and Seiffert, 2002). Most extant glirid genera were clearly differentiated and exhibited their greatest species diversity by the early to middle Miocene (Daams, 1999; Daams and De Bruijn, 1995; Hartenberger, 1994). The Graphiurinae are an exception; definite examples of Graphiurus are known only as far back as Pliocene (Hendey, 1981; Pocock, 1976), although Denys (1990 a), Senut et al. (1992), and Mein et al. (2000 a) recorded late Miocene "graphiurines" from South Africa and Namibia. The living Palaearctic genera are but relicts of a rich adaptive radiation of up to 15 genera, and it is hypothesized that Miocene European glirids were ecologically equivalent to certain recent murid assemblages (Hartenberger, 1994).
The origin of glirids, and the evolutionary relationship between glirids and other rodent families are subjects of much morphological and molecular research with contradictory results. Meng (1990) suggested ancestry rooted in reithroparamyids (in Infraorder Sciurida, which also contains Sciuridae; see McKenna and Bell, 1997). Hartenberger (1971, 1994, 1998), Vianey-Liaud (1994) and Vianey-Liaud and Jaeger (1996) arranged glirids as sciuromorphs rooted in the subfamily Microparamyinae (Ischyromyoidea). Analyses of middle ear anatomy (Lavocat and Parent, 1985) and cephalic arterial supply (Bugge, 1971 a, 1985) support a strong phylogenetic affinity between glirids and sciurids. Landry (1999), however, placed dormice in the Phaneraulata of Sciuromorpha, which excludes squirrels but contains dipodoids, muroids, geomyoids, and theridomyids. He regarded the theridomyid pseudosciurines as possibly ancestral to Phaneraulata, with one lineage leading to murids and geomyoids, another to glirids: "It would not be too far off the mark to think of Graphiurus as a surviving pseudosciurine" (Landry, 1999:313). Modern glirids (excluding graphiurines) have been characterized as myomorphous, and several authors included Gliridae within suborder Myomorpha (Chaline and Mein, 1979; McKenna and Bell, 1997; Simpson, 1945; Wahlert, 1978, 1983, 1985; Wahlert et al., 1993; Wood, 1965). Wahlert et al. (1993) placed them within Myomorpha based on derived cranial characters; their phylogenetic reconstruction indicated that the hystricomorphous Graphiurus is the most primitive extant glirid, and the myomorphy exhibited by all other extant glirids is convergent to that of true myomorphs. Vianey-Liaud (1985) employed "pseudomyomorphy" to distinguish the zygomasseteric muscular arrangement exhibited by glirids from murid myomorphy, and this term was endorsed by Maier et al. (2002) to describe the configuration derived from their ontological study of the medial masseter muscle. Landry (1999) agreed that glirids do not exhibit myomorphy, but stated that "pseudosciuromorphy" would be more appropriate for the muscular arrangement, based on his view that the hystricomorphous graphiurines represent the primitive dormouse condition.
The inclusion of glirids in Myomorpha has not been supported by recent morphological and molecular research (Adkins et al., 2001, 2003; Bentz and Montgelard, 1999; Bugge, 1971 a, 1985; Corneli, 2002; DeBry and Sagel, 2001; Eizirik et al., 2001; Hartenberger 1971, 1994, 1998; Huchon et al., 1999, 2002; Kramerov, 1999; Kramerov and Vassetzky, 2001; Kramerov et al., 1999; Lavocat and Parent, 1985; Lin et al., 2002; Meng, 1990; Montgelard et al., 2001, 2002; Murphy et al., 2001 a; Nedbal et al., 1996; Nikaido et al., 2003; Reyes et al., 1998; Vianey-Liaud 1974, 1985, 1989, 1994; Waddell and Shelley, 2003; Yachontov and Potapova, 1991). Brandt’s (1855) subordinal divisions (Sciuromorpha, Myomorpha and Hystricomorpha), which were based on differences in zygomasseteric musculature arrangement, have likewise been contested (Landry, 1999; Luckett and Hartenberger, 1985 b; Nedbal et al., 1996). Most authors now associate glirids with sciurids (or with Hystricognathi, when sciurids were not included in analyses); they agree with Wahlert et al. (1993) that the myomorphous condition exhibited by most modern glirids is convergent with muroids, though most advocate glirid myomorphy as being derived from a protrogomorphous ancestor. Moreover, recent molecular analyses support the grouping of sciurids and aplodontids (Suborder Sciuromorpha of McKenna and Bell, 1997) with glirids, and suggest that Gliridae is the sister clade to that containing Sciuridae and Aplodontidae (Adkins et al., 2001, 2003; Huchon et al., 1999, 2002; Montgelard et al., 2002). If protrogomorphy is the primitive state for glirids, the hystricomorphy exhibited by graphiurines was either 1) derived from the primitive protrogomorphous morphology, thus representing a lineage independent of all other dormice, which would be concordant with several morphological studies (e.g., Yachontov and Potapova, 1991; Wahlert et al., 1993); or 2) derived from the myomorphous state (Vianey-Liaud’s, 1985, "pseudomyomorphy") shared by other modern glirids, which would be consistent with other morphological studies (e.g., Daams and De Bruijn, 1995; Koenigswald, 1993, 1995).
Vianey-Liaud and Jaeger (1996) proposed Gliridae to be paraphyletic, hypothesizing that graphiurines (which they advocated placing in a separate family, Graphiuridae) are most closely related to anomalurids. They further suggested that anomalurids and graphiurines should possibly be placed in the same family, based on their view that both groups are descended from zegdoumyids. All other recently published molecular and morphological studies support the monophyly of Gliridae (Catzeflis et al., 1995; Daams and de Bruijn, 1995; Debry and Sagel, 2001; Hanni et al., 1995; Hartenberger, 1994, 1998; Huchon et al., 1999, 2002; Meng, 1990; Montgelard et al., 2001, 2002, 2003; Robinson et al., 1997; Storch 1995 b; Suzuki et al., 1997; Wahlert et al., 1993), and results of molecular analyses by Bentz and Montgelard (1999) and Montgelard et al. (2001, 2002) explicitly refute the hypothesis of paraphyly and phylogenetic alliance with anomalurids.
Wahlert et al. (1993) incorporated dental characters plus forty-three osteological traits in a phylogenetic analysis of extant glirid genera. Except for the inclusion of Muscardinus in Leithiinae (Montgelard et al., 2003) instead of Glirinae, Wahlert et al.’s classification is followed here because it reflects the most comprehensive phylogenetic analysis of glirids thus far. Several recent reviews and analyses address intrafamilial relationships using a variety of characters: molecular data (Bentz and Montgelard, 1999; Filippucci and Kotsakis, 1995; Montgelard et al., 2003; Suzuki et al. 1997); karyotypic information (Zima et al., 1995); dental morphology (Daams and De Bruijn, 1995; Pavlinov, 2001 b); incisor enamel microstructure (Koenigswald, 1993, 1995); cranial and dental morphology (Vianey-Liaud and Jaeger, 1996); cranial, dental and genital morphology (Storch, 1995 b); cranial, masticatory and tongue structure (Yachontov and Potapova, 1991). Each study has provided valuable insight, data and hypotheses regarding the relationships among dormice. Some of their conclusions support the hypotheses of Wahlert et al. (1993), others are contradictory. It is not possible to follow any one of these alternate classifications here because usually the methodology used to deduce relationships among glirid genera was not given. Dendrograms depicting hypothesized relationships were provided, as were descriptions of characters, but essential information regarding character states and polarities, numbers and origins of specimens examined, and methodology was either absent or inconsistent. In the few studies that clearly documented methodology and character states, the results were either inconclusive (Bentz and Montgelard, 1999; Zima et al., 1995) or sampled too few taxa to provide a comprehensive hypothesis of intrafamilial relationships (Filippucci and Kotsakis, 1995; Suzuki et al., 1997; Zima et al., 1995). The phylogenetic analyses of DNA nuclear fragments and mitochondrial gene sequences by Montgelard et al. (2003:1953) is an exception: "... except for the position of Muscardinus ..., the identification of three major glirid clades (Graphiurus, Muscardinus + Leithiinae and Glis + Glirulus) on molecular grounds confirms and extends the classification proposed by Wahlert et al. (1993) on the basis of morphological data."
Rossolimo et al. (2001) provided a comprehensive review of recent and fossil glirids, including descriptions and illustrations of cranial characters, zygomasseteric myology, internal bullar morphology and review of phylogeny. Each detailed species account contains illustrations of live animals, measurements, karyological data, ecological information, vocalization data, ectoparasite records and a distribution map. Review and comparison of vocalization data among glirid genera reported by Hutterer and Peters (2001) and Nowakowski and Rachwald (2000). The Dormouse Hollow (www.glirarium.de/dormouse), edited by Werner Haberl, provides a variety of information about dormice, including past and current research by glirid specialists. For synonyms see McKenna and Bell (1997).
Notes
Files
Files
(13.1 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:3f3425f35e4d802bfe114206c08f793a
|
13.1 kB | Download |
System files
(80.8 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:9629861f91183544dc7faab03335057e
|
80.8 kB | Download |
Linked records
Additional details
Identifiers
Related works
- Is part of
- Book chapter: 10.5281/zenodo.7316535 (DOI)
- Book chapter: http://publication.plazi.org/id/7DACEFD3BC5B8C022ED9C034C96FCB52 (URL)
- Is source of
- https://biodiversitypmc.sibils.org/collections/plazi/A4D44197BFE0CDE8E2ACE468B80D498D (URL)
- https://www.gbif.org/species/231537005 (URL)
Biodiversity
References
- Muirhead, L. 1819. Mazology. Pp. 393 - 486 [pls. 353 - 358], in The Edinburgh encyclopaedia, (D. Brewster, ed.). Fourth ed. William Blackwood, Edinburgh, 13: 1 - 744, pls. 347 - 371, 1830.
- McKenna, M. C., and S. K. Bell. 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 pp.
- Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85: 1 - 350.
- Lydekker, R. 1895 [1896]. On the affinities of the so-called extinct giant dormouse of Malta. Proceedings of the Zoological Society of London, 1895: 860 - 863.
- Gray, J. E. 1821. On the natural arrangement of vertebrose animals. London Medical Repository, 15 (1): 296 - 310.
- Gray, J. E. 1825. Outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe. Annals of Philosophy, n. s., ser. 2, 10: 337 - 344.
- Waterhouse, G. R. 1839. Observations on the Rodentia with a view to point out groups as indicated by the structure of the crania in this order of mammals. Magazine of Natural History, ser. 2, 3: 90 - 96.
- Gill, T. 1872. Arrangement of the families of mammals with analytical tables. Smithsonian Miscellaneous Collections, 11: 1 - 98.
- Belosludov, B. A., and V. S. Bazhanov. 1939. [A new genus and species of rodent from the central Kazakhstan (USSR)]. Uchenye Zapiski Kazakhskovo Gosudarstvennovo Universiteta, Alma-Ata, 1 (1): 81 - 86 (in Russian).
- Winge, H. 1887. Jordfunde og nulevende Gnavere (Rodentia) fra Lagoa Santa, Minas Geraes, Brasilien: Med udsigt over gnavernes indbyrdes slagtskab. E Museo Lundii, 1 (3): 1 - 178.
- Brisson, M. J. 1762. Le regnum animale in classes IX distributum, sive synopsis methodica sistens generalem animalium distributionem in classes IX, & duarum primarum classium, quadrupedum scilicet & cetaceorum, particularem dibvisionem in ordines, sectiones, genera & species. T. Haak, Paris, 296 pp.
- Thomas, O. 1896 [1897]. On the genera of rodents: An attempt to bring up to date the current arrangement of the order. Proceedings of the Zoological Society of London, 1896: 1012 - 1028.
- Hopwood, A. T. 1947. The generic names of the mandrill and baboons, with notes on some of the genera of Brisson, 1762. Proceedings of the Zoological Society of London, 117: 533 - 536.
- Erxleben, J. C. P. 1777. Systema regni animalis per classes, ordines, genera, species, varietates, cum synonymia et historia animalium. Classis I. Mammalia. Weygandianis, Lipsiae, 636 pp.
- Storr, G. C. C. 1780. Prodromus methodi mammalium. Inaugeralem disputationem propositus praeside G. C. C. Storr. Respondente F. Wolffer Litteris Reissimis, Tubingae, 43 pp.
- Linnaeus, C. (revised by J. F. Gmelin). 1788. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis synonymis, locis. Vol. I. Regum Animale. Class 1, Mammalia. Thirteenth ed. (revised by J. F. Gmelin). G. E. Beir, Lipsiae, 232 pp.
- Wahlert, J. H., S. L. Sawitzke, and M. E. Holden. 1993. Cranial anatomy and relationships of dormice (Rodentia, Myoxidae). American Museum Novitates, 3061: 1 - 32.
- International Commission on Zoological Nomenclature. 1998. Opinion 1894. Regnum Animals …, Ed. 2 (M. J. Brisson, 1762): Rejected for nomenclatural purposes, with the conservation of the mammalian generic names Philander (Marsupialia), Pteropus (Chiroptera), Glis, Cuniculus and Hydrochoerus (Rodentia), Meles, Lutra and Hyaena (Carnivora), Tapirus (Perissodactyla), Tragulus and Giraffa (Artiodactyla). Bulletin of Zoological Nomenclature, 55 (1): 64 - 71.
- Daams, R. 1999. Family Gliridae. Pp. 301 - 318, in The Miocene land mammals of Europe (G. E. Rossner and K. Heissig, eds.). Pfeil, Munchen, 515 pp.
- Daams, R., and H. De Bruijn. 1995. A classification of the Gliridae (Rodentia) on the basis of dental morphology. Pp. 3 - 50, in Proceedings of II Conference on Dormice (Rodentia, Myoxidae) (M. G. Filippucci, ed.). Hystrix, n. s., 6 (1 - 2): 1 - 340.
- Uhlig, U. 2001. The Gliridae (Mammalia) from the Oligocene (MP 24) of Groben 3 in the folded molasse of southern Germany. Paleovertebrata, 30 (3 - 4): 151 - 187.
- Hartenberger, J. - L. 1994. The evolution of the Gliroidea. Pp. 19 - 33, in Rodent and Lagomorph Families of Asian Origins and Diversification (Y. Tomida, C. k. Li and T. Setoguchi, eds.). National Science Museum Monographs, No. 8, Tokyo, 195 pp.
- Adkins, R. M., A. H. Walton, and R. L. Honeycutt. 2003. High-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26 (3): 409 - 420.
- Huchon, D., O. Madsen, M. J. J. B. Sibbald, K. Ament, M. J. Stanhope, F. Catzeflis, W. W. de Jong, and E. J. P. Douzery. 2002. Rodent phylogeny and a timescale for the evolution of Glires: Evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19 (7): 1053 - 1065.
- Collinson, M. E., and J. J. Hooker. 2000. Gnaw marks on Eocene seeds: Evidence for early Rodent behavior. Palaeogeography, Palaeoclimatology, Palaeoecology, 157 (1 - 2): 127 - 149.
- Storch, G., and C. Seiffert. 2002. An extraordinarily preserved fossil specimen of Eogliravus, the oldest known glirid genus. Pp. 20, in International Conference on Dormouse (Myoxidae). Abstracts (G. Bakonyi, S. Bosze and P. Morris, eds.). Szent Istvan University Department of Zoology and Ecology, Godollo, Hungary, 56 pp.
- Hendey, Q. B. 1981. Palaeoecology of the Late Tertiary fossil occurrences in ' E' Quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Annals of the South African Museum, 84 (1): 1 - 104.
- Pocock, T. N. 1976. Pliocene mammalian microfauna from Langebaanweg: A new fossil genus linking the Otomyinae with the Murinae. South African Journal of Science, 72: 58 - 60.
- Denys, C. 1990 a. Implications paleoecologiques et paleobiogeographiques de l'etude de rongeurs plio-pleistocenes d'Afrique orientale et australe. Memoirs Institut Science et Terre, Univsite Pierre et Marie Curie, Paris VI, 428 pp.
- Senut, B., M. Pickford, P. Mein, G. Conroy, and J. Van Couvering. 1992. Discovery of 12 new Late Cainozoic fossiliferous sites in palaeokarsts of the Otavi Mountains, Namibia. Comptes Rendus de l'Academie des Sciences (Paris), 314 (ser. II): 727 - 733.
- Mein, P., M. Pickford and B. Senut. 2000 a. Late Miocene micromammals from the Harasib karst deposits, Namibia. Part 1 -- Large muroids and non-muroid rodents. Communications of the Geological Survey of Namibia, 12: 375 - 390.
- Meng, J. 1990. The auditory region of Reithroparamys delicatissimus and its systematic implications. American Museum Novitates, 2972: 1 - 35.
- Hartenberger, J. - L. 1971. Contribution a l'etude des genres Gliravus et Microparamys (Rodentia) de l " eocene d'Europe. Paleovertebrata, 4: 97 - 135.
- Vianey-Liaud, M., and J. J. Jaeger. 1996. A new hypothesis for the origin of African Anomaluridae and Graphiuridae (Rodentia). Paleovertebrata, 25: 349 - 358.
- Lavocat, R., and J. - P. Parent. 1985. Phylogenetic analysis of middle ear features in fossil and living rodents. Pp. 333 - 354, in Evolutionary Relationships among Rodents: A Multidisciplinary Analysis (W. P. Luckett and J. - L. Hartenberger, eds.). Plenum Press, New York, 721 pp.
- Bugge, J. 1971 a. The cephalic arterial system in mole-rats (Spalacidae) bamboo-rats (Rhizomyidae), jumping mice and jerboas (Dipodoidea) and dormice (Gliroidea) with special reference to the systematic classification of rodents. Acta Anatomica, 79: 165 - 180.
- Wolman, A. A. 1985. Gray whale- - Eschrichtus robustus. Pp. 67 - 90, in Handbook of marine mammals: The sirenians and baleen whales (S. H. Ridgway and R. Harrison, eds.). Academic Press, London, 3: 1 - 362.
- Landry, S. O., Jr. 1999. A proposal for a new classification and nomenclature for the Glires (Lagomorpha and Rodentia). Mitteilungen des Museums fur Naturkunde, Berlin, Zoologische Reihe, 75: 283 - 316.
- Chaline, J., and P. Mein. 1979. Les rongeurs et l'evolution. Doin Editeurs, Paris, 235 pp.
- Wood, A. E. 1965. Grades and clades among rodents. Evolution, 19: 115 - 130.
- Vianey-Liaud, M. 1985. Possible evolutionary relationships among Eocene and Lower Oligocene rodents of Asia, Europe and North America. Pp. 277 - 309, in Evolutionary Relationships Among Rodents. A multidisciplinary analysis. W. P. Luckett and J. - L. Hartenberger, eds. Plenum Press, New York, 721 pp.
- Maier, W., P. Klingler, and I. Ruf. 2002. Ontogeny of the medial masseter muscle, pseudo-myomorphy, and the systematic position of the Gliridae (Rodentia, Mammalia). Journal of Mammalian Evolution, 9: 253 - 269.
- Adkins, R. M., E. L. Gelke, D. Rowe, and R. L. Honeycutt. 2001. Molecular phylogeny and divergence time estimates for major rodent groups: Evidence from multiple genes. Molecular Biology and Evolution, 18 (5): 777 - 791.
- Bentz, S., and C. Montgelard. 1999. Systematic position of the African Dormouse Graphiurus (Rodentia, Gliridae) assessed from cytochrome b and 12 S rRNA mitochondrial genes. Journal of Mammalian Evolution, 6 (1): 67 - 83.
- Corneli, P. S. 2002. Complete mitochondrial genomes and eutherian evolution. Journal of Mammalian Evolution, 9: 281 - 305.
- Debry, R. W., and R. M. Sagel. 2001. Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encolded gene IRBP. Molecular Phylogenetics and Evolution, 19: 290 - 301.
- Eizirik, E., W. J. Murphy, and S. J. O'Brien. 2001. Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity, 92: 212 - 219.
- Huchon, D., F. M. Catzeflis, and E. J. P. Douzery. 1999. Molecular evolution of the nuclear Willebrand factor gene in mammals and the phylogeny of rodents. Molecular Biology and Evolution, 16: 577 - 589.
- Kramerov, D., and N. Vassetzky. 2001. Structure and origin of a novel dimeric retroposon B 1 - dID. Journal of Molecular Evolution, 52: 137 - 143.
- Kramerov, D., N. Vassetzky and I. Serdobova. 1999. The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. Molecular Biology and Evolution, 16 (5): 715 - 717.
- Montgelard, C., S. Bentz, C. Douady, J. Lauquin, and F. M. Catzeflis. 2001. Molecular phylogeny of the sciurognath rodent families Gliridae, Anomaluridae and Pedetidae. Morphological and paleontological implications. Pp. 293 - 307, in African Small Mammals (C. Denys, L. Granjon, and A. Poulet, eds.). IRD Editions, Collection colloques et seminaires, Paris, 570 pp.
- Montgelard, C., S. Bentz, C. Tirard, O. Verneau, and F. M. Catzeflis. 2002. Molecular systematics of Sciurognathi (Rodentia): The mitochondrial cytochrome b and 12 S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22: 220 - 233.
- Murphy, W. J., E. Eizirik, W. E. Johnson, Ya Ping Zhang, O. A. Ryder and S. O'Brien. 2001 a. Molecular phylogenetics and the origins of placental mammals. Nature, 409: 614 - 618.
- Nedbal, M. A., R. L. Honeycutt, and D. A. Schlitter. 1996. Higher-level systematics of rodents (Mammalia, Rodentia): Evidence from the mitochondrial 12 S rRNA gene. Journal of Mammalian Evolution, 3: 201 - 237.
- Nikaido, M., Y. Cao, M. Harada, N. Okada, and M. Hasegawa. 2003. Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Molecular Phylogenetics and Evolution, 28: 276 - 284.
- Reyes, A., G. Pesole, and C. Saccone. 1998. Complete mitochondrial DNA sequence of the Fat Dormouse, Glis glis: Further evidence of rodent paraphyly. Molecular Biology and Evolution, 15 (5): 499 - 505.
- Vianey-Liaud, M. 1974. Les rongeurs de loligocene inferieur d'Escamps. Paleovertebrata, 6: 197 - 241.
- Vianey-Liaud, M. 1989. Parallelism among Gliridae (Rodentia): The genus Gliravus Stehlin and Schaub. Historical Biology, 2: 213 - 226.
- Waddell, P. J., and S. Shelley. 2003. Evaluating placental inter-ordinal phylogenies with novel sequences including RAG 1, gamma-fibrinogen, ND 6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Molecular Phylogenetics and Evolution, 28: 197 - 224.
- Yachontov, E. L., and E. G. Potapova. 1991. On the position of dormice (Gliroidea) in the system of rodents. Proceedings of the Zoological Institute, 243: 127 - 147.
- Luckett, W. P., and J. - L. Hartenberger. 1985 b. Evolutionary relationships among rodents: Comments and conclusions. Pp. 685 - 712, in Evolutionary Relationships among Rodents: A Multidisciplinary Analysis (W. P. Luckett and J. - L. Hartenberger, eds.). Plenum Press, New York, 721 pp.
- Koenigswald, W. von. 1993. Die Schmelzmuster in den Schneidezahnen der Gliroidea (Gliridae und Seleviniidae, Rodentia, Mammalia) und ihre systematische Bedeutung. Zeitschrift fur Saugetierkunde, 58: 92 - 115.
- Koenigswald, W. von. 1995. Enamel differentiations in myoxid incisors and their systematic significance. Pp. 99 - 107, in Proceedings of II Conference on Dormice (Rodentia, Myoxidae) (M. G. Filippucci, ed.). Hystrix, n. s., 6 (1 - 2): 1 - 340.
- Catzeflis, F. M., C. Hanni, P. Sourrouille, and E. Douzery. 1995. Re: Molecular systematics of hystricognath rodents: The contribution of sciurognath mitochondrial 12 S rRNA sequences (Letter to the Editor). Molecular Phylogenetics and Evolution, 4 (3): 357 - 360.
- Hanni, C., V. Laudet, V. Barriel, and F. M. Catzeflis. 1995. Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12 S rRNA mitochondrial gene sequences. Israel Journal of Zoology, 41: 131 - 146.
- Montgelard, C., C. A. Matthee, and T. J. Robinson. 2003. Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa. Proceedings of the Royal Society of London. B, 270: 1947 - 1955.
- Robinson, M., F. Catzeflis, J. Briolay, and D. Mouchiroud. 1997. Molecular phylogeny of rodents, with special emphasis on murids: Evidence from nuclear gene LCAT. Molecular Phylogenetics and Evolution, 8 (3): 423 - 434.
- Storch, G. 1995 b. Affinities among living dormouse genera. Pp. 51 - 62, in Proceedings of II Conference on Dormice (Rodentia, Myoxidae) (M. G. Filippucci, ed.). Hystrix, n. s., 6 (1 - 2): 1 - 340.
- Suzuki, H., S. Minato, S. Sakurai, K. Tsuchiya, and I. M. Fokin. 1997. Phylogenetic position and geographic differentiation of the Japanese Dormouse, Glirulus japonicus, revealed by variations among rDNA, mtDNA and the Sry gene. Zoological Science, 14: 167 - 173.
- Filippucci, M. G., and T. Kotsakis. 1995. Biochemical systematics and evolution of Myoxidae. Pp. 77 - 97, in Proceedings of II Conference on Dormice (Rodentia, Myoxidae) (M. G. Filippucci, ed.). Hystrix, n. s., 6 (1 - 2): 1 - 340.
- Pavlinov, I. Ya. 2001 b. Geometric morphometrics of glirid dental crown patterns. Trakya University Journal of Scientific Research B, 2 (2): 151 - 157.
- Rossolimo, O. L., E. G. Potapova, I. Ya. Pavlinov, S. V. Kruskop, and O. V. Voltzit. 2001. [Dormice (Myoxidae) of the World.] Sbornik Trudov Zoologicheskogo Muzeya MGU 42: 1 - 232 (in Russian with English summary).
- Hutterer, R., and G. Peters. 2001. The vocal repertoire of Graphiurus parvus, and comparisons with other species of dormice. Trakya University Journal of Scientific Research, ser. B, 2 (2): 69 - 74.
- Nowakowski, W., and A. Rachwald. 2000. Ultrasound and audible sound emission in dormice family (Gliridae: Rodentia). Biological Bulletin of Poznan, 37 (1): 153 - 158.