Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published May 30, 2024 | Version CC-BY-NC-ND 4.0
Journal article Open

Advancing Corrosion Resistance and Micro-hardness in 6061 Aluminium Alloy through Friction Stir Surface Processing

  • 1. Assistant Professor, Department of Mechanical Engineering, SATI Vidisha (M.P.), India.
  • 1. Assistant Professor, Department of Mechanical Engineering, SATI Vidisha (M.P.), India.
  • 2. Professor, Department of Mechanical Engineering, UIT Shivpuri, (M.P.) India.
  • 3. Professor, Department of Mechanical Engineering, SATI Vidisha, (M.P.), India.
  • 4. Associate Professor, Department of Mechanical Engineering, MANIT Bhopal (M.P.), India.

Description

Abstract: Friction stir surface processing (FSSP) is a promising technique for enhancing the properties of aluminium alloys. This abstract presents the findings of a study focused on the FSSP of 6061 aluminium alloy to improve its corrosion resistance and micro-hardness. The FSSP method involves the stirring of a rotating tool across the alloy's surface, inducing plastic deformation and refinement of the microstructure. The study investigates the impact of FSSP parameters such as rotational speed, traverse speed, and tool geometry on the corrosion resistance and micro-hardness of the alloy. Results show that FSSP significantly improves the corrosion resistance of the 6061 aluminium alloy, attributed to refined grain structure and reduced grain boundary corrosion susceptibility. Additionally, micro-hardness is enhanced due to the refined microstructure and dispersion strengthening effects. The findings demonstrate the potential of FSSP as a viable surface treatment technique for aluminium alloys, offering improved corrosion resistance and mechanical properties for various engineering applications.

Files

A806513010524.pdf

Files (427.4 kB)

Name Size Download all
md5:7f28ebdb1e8e7d16f1c2f6a13226196d
427.4 kB Preview Download

Additional details

Identifiers

Dates

Accepted
2024-05-15
Manuscript received on 24 April 2024 | Revised Manuscript received on 07May 2024 | Manuscript Accepted on 15 May 2024 | Manuscript published on 30 May 2024.

References

  • Zainelabdeen Ibrahim H., Al-Badour Fadi A., Adesina Akeem Yusuf, Suleiman Rami, Ghaith Fadi A. 2023 Friction stir surface processing of 6061 aluminium alloy for superior corrosion resistance and enhanced micro-hardness, International Journal of Lightweight Materials and Manufacture 6, pp no. 129-139. https://doi.org/10.1016/j.ijlmm.2022.06.004
  • Yi J., Wang G., Kang L.I.S., Liu Z wen, Gong Y Li 2019 Effect of post-weld heat treatment on microstructure and mechanical properties of welded joints of 6061-T6 aluminium alloy, Trans. Nonferrous Metals Soc. China 29 2035e2046, https://doi.org/10.1016/S1003-6326(19)65110-1
  • Devaraju A., Kumar A., Kotiveerachari B., 2013 Influence of addition of Gr p/Al2O3p with SiCp on wear properties of aluminium alloy 6061-T6 hybrid composites via friction stir processing", Trans. Nonferrous Metals Soc. China 23, 1275e1280. https://doi.org/10.1016/S1003-6326(13)62593-5
  • Kheirkhah S., Imani M., Aliramezani R., Zamani M.H., A. Kheilnejad A. 2019 Micro-structure, mechanical properties and corrosion resistance of Al6061/BN surface composite prepared by friction stir processing, Surf. Topogr. Metrol. Prop. 7, 35002, https://doi.org/10.1088/2051-672X/ab2a4b
  • Nejadseyfi O., Shokuhfar A., Dabiri A., Azimi A. 2015 Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminium alloy", J. Alloys Compd. 648, 912e918. https://doi.org/10.1016/j.jallcom.2015.05.177
  • El-Garaihy W.H., Fouad D.M., Salem H.G., 2018 Multi-channel spiral twist extrusion (MCSTE): a novel severe plastic deformation technique for grain refinement, Metall. Mater. Trans. A 49, 2854e2864. https://doi.org/10.1007/s11661-018-4621-4
  • Kadkhodaee M., Babaiee M., Manesh H.D., Pakshir M., Hashemi B. 2013 Evaluation of corrosion properties of Al/nanosilica nano-composite sheets produced by accumulative roll bonding (ARB) process, J. Alloys Compd. 576, 66e71. https://doi.org/10.1016/j.jallcom.2013.04.090
  • Gashti S.O., Fattah-Alhosseini A., Mazaheri Y., Keshavarz M.K. 2016 Effect of grain refinement on mechanical and electrochemical properties of ultra-fine grained AA1050 fabricated via ARB process, J. Manuf. Process. 22, 269e277. https://doi.org/10.1016/j.jmapro.2016.03.015
  • Ma Z.Y. 2008 Friction stir processing technology: a review, Metall. Mater. Trans. A 954, 642e658. https://doi.org/10.1007/s11661-007-9459-0
  • Naeini M.F., Shariat M.H., Eizadjou M. 2011 On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process, J. Alloys Compd. 509, 4696e4700. https://doi.org/10.1016/j.jallcom.2011.01.066
  • Surekha K., Murty B.S., Rao K. Prasad 2009 Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminium alloy, Solid State Sci. 11, 907e917. https://doi.org/10.1016/j.solidstatesciences.2008.11.007
  • Surekha K., Murty B.S., Rao K. Prasad 2008 Micro-structural characterization and corrosion behaviour of multi-pass friction stir processed AA2219 aluminium alloy, Surface Coating. Technology 202, 4057e4068. https://doi.org/10.1016/j.surfcoat.2008.02.001
  • Barati M., Abbasi M., Abedini M. 2019 The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite", J. Manuf. Process. 45, 491e497. https://doi.org/10.1016/j.jmapro.2019.07.034.
  • Kumar A., Pal K., Mula S. 2017 Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro- and nanocomposites by friction stir processing", J. Manufacturing Process. 30, 1e13. https://doi.org/10.1016/j.jmapro.2017.09.005.
  • Mehdizade M., Eivani A.R., Soltanieh M. 2020 Effects of reduced surface grain structure and improved particle distribution on pitting corrosion of AA6063 aluminium alloy, J. Alloys Compd. 838, https://doi.org/10.1016/j.jallcom.2020.155464.
  • Ly R., Karayan A.I., Hartwig K.T., Castaneda H. 2019 Insights into the electrochemical response of a partially recrystallized Al-Mg-Si alloy and its relationship to corrosion events, Electrochim. Acta 308, 35e44. https://doi.org/10.1016/j.electacta.2019.03.220
  • Vicere A., Roventi G., Paoletti C., Cabibbo M., Bellezze T. 2019 Corrosion behaviour of aa6012 aluminium alloy processed by ecap and cryogenic treatment, Metals 9 (408), 1e13. https://doi.org/10.3390/met9040408.
  • ASTM, ASTM E112-13: Standard Test Methods for Determining Average Grain Size, ASTM International, 2013, https://doi.org/10.1520/E0112-13.1.4.
  • Cui S., Chen Z.W., Robson J.D. 2010 A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing, Int. J. Mach. Tool Manufact. 50 (12), 1023e1030. https://doi.org/10.1016/j.ijmachtools.2010.09.005.
  • Al-Badour F.A., Adesina A.Y., Ibrahim A.B., Suleiman R.K., Merah N., Sorour A.A. 2020 Electrochemical investigation of the effect of process parameters on the corrosion behaviour of aluminium-cladded pressure vessel steel using a friction stir diffusion cladding process, Metals 10 (5e623), 1e19. https://doi.org/10.3390/met10050623
  • Azizieh M., Kokabi A.H., Abachi P. 2011 Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nano-composites fabricated by friction stir processing, Mater. Des. 32 (4) 2034e2041. https://doi.org/10.1016/j.matdes.2010.11.055.
  • Zohoor M., Givi M.K. Besharati, Salami P. 2012 Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing, Mater. Des. 39, 358e365. https://doi.org/10.1016/j.matdes.2012.02.042.
  • Kwon Y.J., Shigematsu I., N. Saito N. 2003 Mechanical properties of fine-grained aluminium alloy produced by friction stir process, Scripta Mater. 49 (8), 785e789. https://doi.org/10.1016/S1359-6462(03)00407-X.
  • Korchef A., Champion Y., Njah N. 2007 X-ray diffraction analysis of aluminium containing Al8Fe2Si processed by equal channel angular pressing, J. Alloys Compd. 427 (1e2), 176e182. https://doi.org/10.1016/j.jallcom.2006.03.010.
  • Patle H., Dumpala R., Sunil B.R. 2018 Machining characteristics and corrosion behaviour of grain refined AZ91 Mg alloy produced by friction stir processing: role of tool pin profile, Trans. Indian Inst. Met. 71, 951e959. https://doi.org/10.1007/s12666-017-1250-3.
  • Pezeshkian M., Ebrahimzadeh I., Gharavi F. 2018 Fabrication of Cu surface composite reinforced by Ni particles via friction stir processing: microstructure and tribology behaviours", J. Tribol. 140, 011607-1e011607-8. https://doi.org/10.1115/1.4037069
  • Dolatkhah A., Golbabaei P., Givi M.K. Besharati, Molaiekiya F. 2012 Investigating effects of process parameters on micro-structural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Mater. Des. 37, 458e464, https://doi.org/10.1016/j.matdes.2011.09.035.
  • Maurya R., Kumar B., Ariharan S., Ramkumar J., Balani K. 2016 Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy, Mater. Des. 98, 155e166. https://doi.org/10.1016/j.matdes.2016.03.021.
  • Macdonald D.D. 1990 Review of mechanistic analysis by electrochemical impedance spectroscopy, Electrochim. Acta 35 (10), 1509e1525, https://doi.org/10.1016/0013-4686(90)80005-9.
  • McCafferty E. 2010 Introduction to Corrosion Science. https://doi.org/10.1007/978-1-4419-0455-3.
  • Cai C., Zhang Z., Wei Z.L., Yang J.F., J.F. Li J.F. 2012 Electrochemical and corrosion behaviours of pure Mg in neutral 1.0 NaCl solution, Trans. Nonferrous Metals Soc. China 22 (4), 970e976, https://doi.org/10.1016/S1003-6326(11)61272-7
  • Prakashaiah B.G., Kumara D. Vinaya, Pandith A. Anup, Shetty A. Nityananda, Rani B.E. Amitha 2018 Corrosion inhibition of 2024-T3 aluminium alloy in 3.5% NaCl by thiosemicarbazone derivatives, Corrosion Sci. 136, 326e338. https://doi.org/10.1016/j.corsci.2018.03.021.
  • Scully J.R., Silverman D.C., Kendig M.W. 1993 Electrochemical impedance: analysis and interpretation https://doi.org/10.1520/stp1188-eb.
  • Lv J., Luo H., Xie J. 2013 Experimental study of corrosion behaviour for burnished aluminium alloy by EWF, EBSD, EIS and Raman spectra, Appl. Surf. Sci. 273, 192e198. https://doi.org/10.1016/j.apsusc.2013.02.012.
  • Zheng Z.J., Gao Y., Gui Y., Zhu M. 2012 Corrosion behaviour of nano-crystalline 304 stainless steel prepared by equal channel angular pressing, Corrosion Sci. 54, 60e67. https://doi.org/10.1016/j.corsci.2011.08.049.
  • Trdan U., Grum J. 2012 Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods, Corrosion Sci. 59, 324e333. https://doi.org/10.1016/j.corsci.2012.03.019.
  • Heakal F. El-Taib, Tantawy N.S., Shehta O.S. 2011 Influence of chloride ion concentration on the corrosion behaviour of Al-bearing TRIP steels, Mater. Chem. Phys. 130, 743e749. https://doi.org/10.1016/j.matchemphys.2011.07.064.
  • Periasamy, Dr. K., Sivashankar, Mr. N., Chandrakumar, Mr. S., & Viswanathan, Dr. R. (2020). Measurement of Friction and Wear in Aluminum Alloy Al7075/Sic & Gr Processed by Friction Stir Method. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 3, pp. 278–281). https://doi.org/10.35940/ijitee.c8480.019320
  • Kumar, S., Tewari, S. P., & Singh, J. K. (2020). Effect of Current on the Microstructural and Mechanical Properties of Mig Welded Aa6061 Aluminum Alloy. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 5, pp. 4727–4732). https://doi.org/10.35940/ijrte.e6939.018520
  • Effect of Hot Forging on High Temperature Tribilogical Properties of Aluminium Composite Reinforced with Agro and Industrial Waste. (2019). In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6, pp. 1607–1612). https://doi.org/10.35940/ijeat.f8204.088619