Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published April 3, 2017 | Version 10007100
Journal article Open

A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Description

In this study, a new constitutive model is developed
to describe the hyperelastic behavior of collagenous tissues with a
parallel arrangement of collagen fibers such as ligaments and tendons.
The model is formulated using a continuum approach incorporating
the structural changes of the main tissue components: collagen fibers,
proteoglycan-rich matrix and fiber-matrix interaction. The mechanical
contribution of the interaction between the fibers and the matrix
is simply expressed by a coupling term. The structural change
of the collagen fibers is incorporated in the constitutive model to
describe the activation of the fibers under tissue straining. Finally, the
constitutive model can easily describe the stress-stretch nonlinearity
which occurs when a ligament/tendon is axially stretched. This
study shows that the interaction between the fibers and the matrix
contributes to the mechanical tissue response. Therefore, the model
may lead to a better understanding of the physiological mechanisms
of ligaments and tendons under axial loading.

Files

10007100.pdf

Files (138.7 kB)

Name Size Download all
md5:ca3af92460d4db74f6e0cf10e08cc43e
138.7 kB Preview Download

Additional details

References

  • H. L. Guerin and D. M. Elliott, Quantifying the contributors of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model, Journal of Orthopaedic Research, Vol. 25(4), pp. 508-516, 2007.
  • H. A. L. Guerin and D. M. Elliott, The role of fiber-matrix interactions in a nonlinear fiber-reinforced strain energy model of tendon, ASME Journal of Biomechanical Engineering, Vol. 127(2), pp. 345-350, 2005.
  • Z. Guo, X. Shi, X. Peng and F. Caner, Fibre-matrix interaction in the human annulus fibrosus, Journal of the mechanical behavior of biomedical materials, Vol. 5(1), pp. 193-205, 2012.
  • G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, John Wiley & Sons Ltd., 2000.
  • Y. Lanir, Structure-strength relations in mammalian tendon, Biophysical Journal, Vol. 24(2), pp. 541-554, 1978.
  • H. A. Lynch, W. Johannessen, J. P. Wu, A. Jawa and D. M. Elliott, Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon, ASME Journal of Biomechanical Engineering, Vol. 125(5), pp. 726-731, 2003.
  • X. Q. Peng, Z. Y. Guo and B. Moran, An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus, ASME Journal of Applied Mechanics, Vol. 73(5), pp. 815-824, 2006.
  • R. Sopakayang and R. De Vita, A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues, Medical Engineering & Physics Journal, Vol. 33(9), pp. 1056-1063, 2011.
  • A. J. M. Spencer Constitutive theory for strongly anisotropic solids, in continuum theory of the mechanics of fibre-reinforced composites, A.J.M. Spencer ed., Springer-Verlag, New York, pp. 1-32, 1984. [10] S. L.-Y. Woo, G. A. Johnson and B. A. Smith, Mathematical modeling of ligaments and tendons, ASME Journal of Biomechanical Engineering, Vol. 115(4B), pp. 468-473, 1993.