Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published May 30, 2024 | Version CC-BY-NC-ND 4.0
Journal article Open

Valorisation of Wool Waste and Chicken Feathers for Medical Textile Applications

  • 1. Department of Fibres and Textile Processing Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai (Maharashtra), India.

Contributors

Contact person:

  • 1. Department of Fibres and Textile Processing Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai (Maharashtra), India.

Description

Abstract: Waste valorisation is the key to waste minimization. Chicken feathers and wool fabric waste are rich in protein content. Keratin forms a major part of these two materials. However, these keratin rich material are often discarded and finally end up as waste in landfills or incinerated. This research aims to upcycle woolen waste and chicken feathers by selectively extracting keratin from them. This study reports the development of a wound-healing nanofibre patch derived from non-conventional keratin sources like waste wool and chicken feathers. It aims to repurpose these abundant and underutilised materials, taking advantage of their high crude protein content. A three-step process for developing wound healing material is reported: cleaning waste wool and chicken feathers and extracting keratin to make electrospun nanofibre patch. The electrospun keratin patch is incorporated with honey, a natural antiseptic agent for producing desired wound healing properties. The extraction of keratin is initially tested qualitatively using Biuret test. The Scanning Electron Microscopy (SEM) images confirm the successful electrospinning of keratin nanofibres, demonstrating a well-defined and uniform fibrous surface morphology. The FT-IR spectrum confirms the presence of functional groups associated with keratin. Furthermore, the antimicrobial study shows promising results, indicating that the protein-based nanofiber patch supports cell growth activity. These findings suggest that the keratin-based nanofiber patch derived from waste wool and chicken feathers has the potential to facilitate the regeneration of damaged tissue and can aid in the wound-healing process. The findings of these study confirms possible extraction of keratin from wool waste and chicken feathers and its application in medical textile applications.

Files

A240904010524.pdf

Files (1.2 MB)

Name Size Download all
md5:f25bef34f58d7174399872e00d29d158
1.2 MB Preview Download

Additional details

Identifiers

Dates

Accepted
2024-05-15
Manuscript received on 29 April 2024 | Revised Manuscript received on 08May 2024 | Manuscript Accepted on 15 May 2024 | Manuscript published on 30 May 2024.

References

  • E. M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, and B. Conti, 'Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration', Pharmaceutics, vol. 12, no. 8, p. 735, Aug. 2020, doi: 10.3390/pharmaceutics12080735. https://doi.org/10.3390/pharmaceutics12080735
  • S. Dhivya, V. V. Padma, and E. Santhini, 'Wound dressings – a review', BioMedicine, vol. 5, no. 4, p. 22, Dec. 2015, doi: 10.7603/s40681-015-0022-9. https://doi.org/10.7603/s40681-015-0022-9
  • S. Ather and K. G. Harding, 'Wound management and dressings', in Advanced Textiles for Wound Care, Elsevier, 2009, pp. 3–19. doi: 10.1533/9781845696306.1.3. https://doi.org/10.1533/9781845696306.1.3
  • E. Rezvani Ghomi, S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, and S. Ramakrishna, 'Wound dressings: Current advances and future directions', J. Appl. Polym. Sci., vol. 136, no. 27, p. 47738, Jul. 2019, doi: 10.1002/app.47738. https://doi.org/10.1002/app.47738
  • K. Chen et al., 'Recent advances in electrospun nanofibers for wound dressing', Eur. Polym. J., vol. 178, p. 111490, Sep. 2022, doi: 10.1016/j.eurpolymj.2022.111490. https://doi.org/10.1016/j.eurpolymj.2022.111490
  • B. Azimi et al., 'Bio-Based Electrospun Fibers for Wound Healing', J. Funct. Biomater., vol. 11, no. 3, p. 67, Sep. 2020, doi: 10.3390/jfb11030067. https://doi.org/10.3390/jfb11030067
  • H. Zhang, X. Lin, X. Cao, Y. Wang, J. Wang, and Y. Zhao, 'Developing natural polymers for skin wound healing', Bioact. Mater., vol. 33, pp. 355–376, Mar. 2024, doi: 10.1016/j.bioactmat.2023.11.012. https://doi.org/10.1016/j.bioactmat.2023.11.012
  • A. T. El-Serafi, I. El-Serafi, I. Steinvall, F. Sjöberg, and M. Elmasry, 'A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective', Int. J. Mol. Sci., vol. 23, no. 14, p. 7934, Jul. 2022, doi: 10.3390/ijms23147934. https://doi.org/10.3390/ijms23147934
  • M. Piipponen, D. Li, and N. X. Landén, 'The Immune Functions of Keratinocytes in Skin Wound Healing', Int. J. Mol. Sci., vol. 21, no. 22, p. 8790, Nov. 2020, doi: 10.3390/ijms21228790. https://doi.org/10.3390/ijms21228790
  • M. Konop, M. Rybka, and A. Drapała, 'Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review', Pharmaceutics, vol. 13, no. 12, p. 2029, Nov. 2021, doi: 10.3390/pharmaceutics13122029. https://doi.org/10.3390/pharmaceutics13122029
  • C. R. Chilakamarry et al., 'Extraction and application of keratin from natural resources: a review', 3 Biotech, vol. 11, no. 5, p. 220, May 2021, doi: 10.1007/s13205-021-02734-7. https://doi.org/10.1007/s13205-021-02734-7
  • B. S. Lazarus, C. Chadha, A. Velasco-Hogan, J. D. V. Barbosa, I. Jasiuk, and M. A. Meyers, 'Engineering with keratin: A functional material and a source of bioinspiration', iScience, vol. 24, no. 8, p. 102798, Aug. 2021, doi: 10.1016/j.isci.2021.102798. https://doi.org/10.1016/j.isci.2021.102798
  • S. Perța-Crișan, C. Ștefan Ursachi, S. Gavrilaș, F. Oancea, and F.-D. Munteanu, 'Closing the Loop with Keratin-Rich Fibrous Materials', Polymers, vol. 13, no. 11, p. 1896, Jun. 2021, doi: 10.3390/polym13111896. https://doi.org/10.3390/polym13111896
  • S. G. Giteru, D. H. Ramsey, Y. Hou, L. Cong, A. Mohan, and A. E. A. Bekhit, 'Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications', Compr. Rev. Food Sci. Food Saf., vol. 22, no. 1, pp. 643–687, Jan. 2023, doi: 10.1111/1541-4337.13087. https://doi.org/10.1111/1541-4337.13087
  • E. Ranjit, S. Hamlet, R. George, A. Sharma, and R. M. Love, 'Biofunctional approaches of wool-based keratin for tissue engineering', J. Sci. Adv. Mater. Devices, vol. 7, no. 1, p. 100398, Mar. 2022, doi: 10.1016/j.jsamd.2021.10.001. https://doi.org/10.1016/j.jsamd.2021.10.001
  • L. R. Burnett et al., 'Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels', Biomaterials, vol. 34, no. 11, pp. 2632–2640, Apr. 2013, doi: 10.1016/j.biomaterials.2012.12.022. https://doi.org/10.1016/j.biomaterials.2012.12.022
  • A. Bianchi-Bosisio, 'PROTEINS | Physiological Samples', in Encyclopedia of Analytical Science, Elsevier, 2005, pp. 357–375. doi: 10.1016/B0-12-369397-7/00494-5. https://doi.org/10.1016/B0-12-369397-7/00494-5
  • L. Wang and X. Wang, 'Effect of structure–property relationships on fatigue failure in natural fibres', in Fatigue Failure of Textile Fibres, Elsevier, 2009, pp. 95–132. doi: 10.1533/9781845695729.2.95. https://doi.org/10.1533/9781845695729.2.95
  • K. Saito, T. Xu, and H. Ishikita, 'Correlation between C═O Stretching Vibrational Frequency and p K a Shift of Carboxylic Acids', J. Phys. Chem. B, vol. 126, no. 27, pp. 4999–5006, Jul. 2022, doi: 10.1021/acs.jpcb.2c02193. https://doi.org/10.1021/acs.jpcb.2c02193
  • B. De Campos Vidal and M. L. S. Mello, 'Collagen type I amide I band infrared spectroscopy', Micron, vol. 42, no. 3, pp. 283–289, Apr. 2011, doi: 10.1016/j.micron.2010.09.010. https://doi.org/10.1016/j.micron.2010.09.010
  • M. He et al., 'Electrospun Silver Nanoparticles-Embedded Feather Keratin/Poly(vinyl alcohol)/Poly(ethylene oxide) Antibacterial Composite Nanofibers', Polymers, vol. 12, no. 2, p. 305, Feb. 2020, doi: 10.3390/polym12020305. https://doi.org/10.3390/polym12020305
  • AATCC Committee, 'AATCC 147 TEST METHOD FOR ANTIMICROBIAL ACTIVITY OF TEXTILE MATERIALS
  • Collagen Based Sponges for Wound Healing. (2019). In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2S2, pp. 916–920). https://doi.org/10.35940/ijitee.b1149.1292s219
  • Karbari, S. R., Inasu, S., Kamalaksha, V., Nayak, V. A., Kumari, M. U., & Shireesha, G. (2020). Simulation and Optimization of stacked PVDF Membrane for Piezoelectric Application. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 5, pp. 551–555). https://doi.org/10.35940/ijeat.e9653.069520
  • Noor, N. M., Hashim, Y. Z. H.-Y., Sani, M. S. A., & Salim, W. W. A. W. (2020). Characterization, Antibacterial and Anti Inflammatory Activities of Electrospun poly vinyl PVA Containing Aquilaria Malaccencis Leaf Extract ALEX Nanofibers. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 9, Issue 3, pp. 541–548). https://doi.org/10.35940/ijrte.c4618.099320
  • Patel, Mr. K., Bhatnagar, Mr. M., Thakor, Mr. N., & Dodia, M. R. V. (2022). Evaluation of Protein and Carbohydrate Content of Some Anti Diabetic Medical Plants. In International Journal of Advanced Medical Sciences and Technology (Vol. 2, Issue 3, pp. 1–6). https://doi.org/10.54105/ijamst.c3027.042322
  • Shujauddin, Dr. M., Alam, S., Rehman, S., & Ahmad, M. (2023). Scientific Evaluation of A Unani Pharmacopoeia-Based Formulation on BPH in Animal Model. In International Journal of Preventive Medicine and Health (Vol. 4, Issue 1, pp. 1–8). https://doi.org/10.54105/ijpmh.a1032.114123