Published May 24, 2024 | Version v1
Dataset Open

Deep learning insights into non-universality in the halo mass function

  • 1. ROR icon University College London
  • 2. Max-Planck-Institut für Astrophysik
  • 3. ROR icon University of Cambridge
  • 4. ROR icon Stockholm University
  • 5. ROR icon University of Geneva

Description

Data used in paper Deep learning insights into non-universality in the halo mass function (DOI: doi.org/10.1093/mnras/stae1696).

Model_outputs.zip contains the saved latents, predictions, ground truths, and the relevant cosmological quantities used in the analysis (see Model_outputs_readme.md).

Trained_model.zip has the trained baseline IVE model. It contains the saved model weights and code needed to build and load the model weights, as well as the test dataset (see Trained_model_readme.md).

Files

Model_outputs.zip

Files (422.9 MB)

Name Size Download all
md5:f7cb52a21d33023313e595b8a66d1d80
362.7 MB Preview Download
md5:d795bb7e51a49343ba1ecd4db2f58e2c
705 Bytes Preview Download
md5:30d4342700ed3e161a6c51a4d7f7ada7
60.2 MB Preview Download
md5:b8b593e9b401a0227666ac5c9b30d62d
939 Bytes Preview Download

Additional details

Related works

Is supplement to
Journal article: 10.1093/mnras/stae1696 (DOI)