Published August 1, 2016 | Version 10005541
Journal article Open

Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Description

In this paper, we present a video based smoke detection
algorithm based on TVL1 optical flow estimation. The main part
of the algorithm is an accumulating system for motion angles and
upward motion speed of the flow field. We optimized the usage of
TVL1 flow estimation for the detection of smoke with very low smoke
density. Therefore, we use adapted flow parameters and estimate the
flow field on difference images. We show in theory and in evaluation
that this improves the performance of smoke detection significantly.
We evaluate the smoke algorithm using videos with different smoke
densities and different backgrounds. We show that smoke detection
is very reliable in varying scenarios. Further we verify that our
algorithm is very robust towards crowded scenes disturbance videos.

Files

10005541.pdf

Files (389.2 kB)

Name Size Download all
md5:27dd2e7350f66ece9ff3860733c4b528
389.2 kB Preview Download

Additional details

References

  • S. Verstockt, P. Lambert, R. Van de Walle, B. Merci, and B. Sette, "State of the art in vision-based fire and smoke dectection," in International Conference on Automatic Fire Detection, 14th, Proceedings, H. Luck and I. Willms, Eds., vol. 2. University of Duisburg-Essen. Department of Communication Systems, 2009, pp. 285–292.
  • A. E. Çetin, K. Dimitropoulos, B. Gouverneur, N. Grammalidis, O. Günay, Y. H. Habibo˘glu, B. U. Töreyin, and S. Verstockt, "Video fire detection - review," Digital Signal Processing, vol. 23, no. 6, pp. 1827 – 1843, 2013.
  • C. Yu, J. Fang, J. Wang, and Y. Zhang, "Video fire smoke detection using motion and color features," Fire Technology, vol. 46, no. 3, pp. 651–663, 2010.
  • C. Yu, Z. Mei, and X. Zhang, "A real-time video fire flame and smoke detection algorithm," Procedia Engineering, vol. 62, no. 0, pp. 891 – 898, 2013.
  • B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2, ser. IJCAI'81. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.
  • F. Yuan, "A fast accumulative motion orientation model based on integral image for video smoke detection," Pattern Recognition Letters, vol. 29, no. 7, pp. 925 – 932, 2008.
  • O.-B. Alejandro, M.-G. Leonardo, S.-P. Gabriel, T.-M. Karina, and N.-M. Mariko, "Improvement of a video smoke detection based on accumulative motion orientation model," in Proceedings of the 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference, ser. CERMA '11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 126–130.
  • I. Kolesov, P. Karasev, A. Tannenbaum, and E. Haber, "Fire and smoke detection in video with optimal mass transport based optical flow and neural networks," in Image Processing (ICIP), 2010 17th IEEE International Conference on, 2010, pp. 761–764.
  • C. Zach, T. Pock, and H. Bischof, "A duality based approach for realtime tv-l1 optical flow," in Proceedings of the 29th DAGM Conference on Pattern Recognition. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 214–223. [10] J. Sánchez Pérez, E. Meinhardt-Llopis, and G. Facciolo, "Tv-l1 optical flow estimation," Image Processing On Line, vol. 2013, pp. 137–150, 2013. [11] (Online). Available: ftp://ftp.cs.rdg.ac.uk/pub/PETS2007/