Published May 22, 2024
| Version v1.2
Journal article
Open
Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabelled machine learning – supplement
- 1. The University of Sydney
- 2. BHP
Description
Source data and code used to create training and test datasets for the machine learning models presented in the paper: Alfonso, C.P., Müller, R.D., Mather, B., Anthony, M. In prep. Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabelled machine learning.
Python notebooks and scripts can also be found in the GitHub repository.
Files
figures.zip
Files
(7.0 GB)
Name | Size | Download all |
---|---|---|
md5:d3d025a0079ff3f090de575c0db90ba5
|
19.6 MB | Preview Download |
md5:811b3d43faa3928c53ff56a56b645dcb
|
8.3 MB | Preview Download |
md5:77c9843773f11fb6618c5b59fc212cd4
|
44.7 MB | Preview Download |
md5:c540788fa6d133a37d21ff79504a2f8c
|
671.4 MB | Preview Download |
md5:da580174ac11de930be8a98193acd783
|
21.8 MB | Preview Download |
md5:91551026b79162b644a2f6cb7b04bc4f
|
6.3 GB | Preview Download |
md5:9b5b3ebdb2bfc30c71e43ad94a3a00c6
|
1.9 MB | Preview Download |
Additional details
Dates
- Updated
-
2024-05-08