Supplementary collection of preprocessed and analysed data objects for the paper: "Gene-level alignment of single cell trajectories"
Creators
Description
Supplementary collection of h5ad data files containing preprocessed and analysed single-cell reference and query datasets discussed in the case studies of the paper:"Gene-level alignment of single cell trajectories" (https://doi.org/10.1101/2023.03.08.531713).
Our artificial thymic organoid raw sequencing data are available from ArrayExpress (E-MTAB-12720).
Below lists the original sources of the literature datasets we downloaded prior to our own preprocessing and trajectory analysis.
-
Original pan fetal reference data from: Suo, C. et al. (2022) "Mapping the developing human immune system across organs" (https://doi.org/10.1126/science.abo0510), downloaded from https://developmental.cellatlas.io/fetal-immune.
-
Original healthy/IPF data from: Adams, T. S. et al. (2020), "Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis" (https://doi.org/10.1126/sciadv.aba1983), downloaded from GEO (GSE136831).
We have run our scripts in https://github.com/Teichlab/G2G_notebooks to generate new latent embeddings and infer pseudotime trajectories for the above datasets, and used them to model trajectory alignments with our newly developed framework: ‘Genes2Genes’ https://github.com/Teichlab/Genes2Genes.
Files
Files
(7.0 GB)
Name | Size | Download all |
---|---|---|
md5:d5b6df7b8355b81bc2c0800ff6683c28
|
20.4 MB | Download |
md5:79d5fb88f600d47c2e25357d674a1c98
|
765.6 MB | Download |
md5:a38707991dc34d3e4f5cc08a57a8dd67
|
70.3 MB | Download |
md5:4d45a0d634f87ec68753143aa61d34be
|
29.8 MB | Download |
md5:e7365b6c0e6f13eb75bee44f791cd94a
|
453.6 MB | Download |
md5:c0e125fa96001fb501eaaf03686d8288
|
491.1 MB | Download |
md5:d59c261e467895d983dbc295a0488f3b
|
23.7 MB | Download |
md5:ed302ee28255bea48b1eb34c744f9eee
|
491.9 MB | Download |
md5:88a2cbfe041fed15c5543505a763fe3f
|
188.9 MB | Download |
md5:02abacf010e6c04b4d6b3939aaf70987
|
682.0 MB | Download |
md5:6bd90b6b049af79b06f481fd79eb3ea4
|
11.6 MB | Download |
md5:ee48d414eee4efb7df4d24192e3aef67
|
430.3 MB | Download |
md5:b9915f380f82c34e618e1d6f72160cc1
|
703.4 MB | Download |
md5:21626eecfd686c071013fd3f62aab0b3
|
430.3 MB | Download |
md5:88f0e22a2208a1ed8296588a1558dc13
|
700.0 MB | Download |
md5:e671c0aec13ddd87174157dbd6dfac53
|
710.4 MB | Download |
md5:588b90a89b218efcc034856ed78eee0d
|
792.3 MB | Download |
Additional details
Related works
- Is supplement to
- https://github.com/Teichlab/G2G_notebooks (URL)
References
- Suo, C. et al. Mapping the developing human immune system across organs. Science (2022)
- Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Science Advances (2020)