Published June 3, 2015 | Version 10001717
Journal article Open

Viscoelastic Characterization of Bovine Trabecular Bone Samples

Description

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Files

10001717.pdf

Files (617.4 kB)

Name Size Download all
md5:ac91986c58e6008466a3f1349f276682
617.4 kB Preview Download

Additional details

References

  • Caler W.E., Carter D.R., "Bone creep-fatigue damage accumulation", J. Biomech., 1989.
  • Fondrk M., Bahniuk E., Davy D.T., Michaels C., "Some viscoplastic characteristics of bovine and human cortical bone", J. Biomech., 1988.
  • Sasaki N., Nakayama Y., Yoshikawa M., Enyo A., "Stress relaxation function of bone and bone collagen", J. Biomech., 1993.
  • Iyo T., Maki Y., Sasaki N., Nakata M., "Anisotropic viscoelastic properties of cortical bone", J. Biomech., 2003.
  • Lakes R., Katz J.L., Sternstein S., "Viscoelastic properties of wet cortical bone – torsional and biaxial studies", J. Biomech., 1979.
  • Lakes R., Katz J.L., "Viscoelastic properties of wet cortical bone, relaxation mechanisms", J. Biomech., 1979.
  • Lakes R., Katz J.L., "Viscoelastic properties of wet cortical bone", J. Biomech., 1979.
  • Yamashita J., Furman B.R., Rawls H.R., Wang X., "The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone", J. Biomed. Mater. Res. (Appl. Biomater.), 2001.
  • Quaglini V., La Russa V., Corneo S., "Nonlinear stress relaxation of trabecular bone", Mechanics Research Communications, 2008. [10] Rapillard L., Chalebois M., Zysset P. H., "Compressive fatigue behavior of human trabecular bone", J. Biomech., 2005. [11] Topolinsky T., Cichansky A., Mazurkiewicz A., Nowicky K., "Study of the behavior of the trabecular bone under cyclic compression with stepwise increasing amplitude", J. Biomech., 2011. [12] Keaveny T.M., Borchers R.D., Gibson L.J., Hayes W.C., "Trabecular bone modulus and strength can depend on specimen geometry", J. Biomech., 1993. [13] Choi K., Kuhn J., Ciarelli M., Goldstein S., "The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size dependency of cortical bone modulus", J. Biomech., 1990. [14] Guedes R. M., Simoes J. A., Morais J. L., "Viscoelastic behavior of bovine cancellous bone under constant strain rate", J. Biomech., 2006. [15] Ashman R.B., Experimental techniques, "Bone Mechanics", Cowin, S.C., CRC Press, Boca Raton, FL, 1989. [16] Kaab M.J., Putz R., Gebauer D., Plitz W., "Changes in cadaveric cancellous vertebral bone strength in relation to time. A biomechanical investigation", Spine, 1998.