Published April 23, 2024
| Version 1.0
Model
Open
METL models
Description
This repository contains pretrained source and target METL models. The metl-pretrained GitHub repository is used to load and run these models, and its readme describes each of the model files.
Files
Files
(737.8 MB)
Name | Size | Download all |
---|---|---|
md5:200b53c2cb47f68b0464410519fb360c
|
9.8 MB | Download |
md5:ad122a773fbd40debc913c5a2cd03bdc
|
9.8 MB | Download |
md5:3922a44fbe5e2fe1dfbc61008adec86e
|
9.9 MB | Download |
md5:548cbb2b776317031988c0c20a787838
|
9.9 MB | Download |
md5:bb0cde3ab6b65272450cc7624ae223e7
|
77.0 MB | Download |
md5:3d1a0ef982d9106fc5ce736a6e174ca3
|
76.9 MB | Download |
md5:e6844c08079e8c28168fa7bc3f09415c
|
203.2 MB | Download |
md5:6f43f638294b2cc14c1f66928f25feff
|
203.1 MB | Download |
md5:157886954216ef1a25ff4a9981637f3f
|
9.9 MB | Download |
md5:f34ce0c73e642524815d94c470e96d02
|
9.9 MB | Download |
md5:3ac1078b02c20e1d7704ba75647c02b2
|
9.9 MB | Download |
md5:8c03a3466f2521d1687d8ffec7ed1d62
|
9.9 MB | Download |
md5:1031b4df750b75e9ac8929c6efb45168
|
9.9 MB | Download |
md5:d136ab0411ef1ee73f9699dc716a13df
|
9.9 MB | Download |
md5:a81d85199612902253afea769ec9bbfd
|
9.9 MB | Download |
md5:8e3e6d74576ec298c7847af1f5365bd2
|
9.9 MB | Download |
md5:ce24dec175f32aee8c23104c6be8459f
|
9.9 MB | Download |
md5:3f91d250dc889820d8dee29b0d154564
|
9.9 MB | Download |
md5:5a31a952f6645dd1d1e190d94be19a0d
|
9.9 MB | Download |
md5:146dcb44ce16e4ff54103300d5b91adc
|
9.9 MB | Download |
md5:beb1bcf9b2323b18b6e9cf1fef3241f9
|
9.9 MB | Download |
md5:9c8ce7a2c15425ed69a470f21e828dcc
|
9.9 MB | Download |
Additional details
Related works
- Is supplement to
- Preprint: 10.1101/2024.03.15.585128 (DOI)
- Software: https://github.com/gitter-lab/metl (URL)
- Software: https://github.com/gitter-lab/metl-pretrained (URL)
Funding
- U.S. National Science Foundation
- Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis 2226383
- U.S. National Science Foundation
- Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis 2226451
- National Institutes of Health
- A Machine Learning Platform for Adaptive Chemical Screening R01GM135631
- National Institutes of Health
- Data-driven analysis of protein structure, function, and regulation R35GM119854
References
- Sam Gelman, Bryce Johnson, Chase Freschlin, Sameer D'Costa, Anthony Gitter, Philip A Romero. Biophysics-based protein language models for protein engineering. bioRxiv, 2024. doi:10.1101/2024.03.15.585128