There is a newer version of the record available.

Published April 23, 2024 | Version 1.0
Model Open

METL models

  • 1. University of Wisconsin-Madison

Description

This repository contains pretrained source and target METL models. The metl-pretrained GitHub repository is used to load and run these models, and its readme describes each of the model files.

Files

Files (737.8 MB)

Name Size Download all
md5:200b53c2cb47f68b0464410519fb360c
9.8 MB Download
md5:ad122a773fbd40debc913c5a2cd03bdc
9.8 MB Download
md5:3922a44fbe5e2fe1dfbc61008adec86e
9.9 MB Download
md5:548cbb2b776317031988c0c20a787838
9.9 MB Download
md5:bb0cde3ab6b65272450cc7624ae223e7
77.0 MB Download
md5:3d1a0ef982d9106fc5ce736a6e174ca3
76.9 MB Download
md5:e6844c08079e8c28168fa7bc3f09415c
203.2 MB Download
md5:6f43f638294b2cc14c1f66928f25feff
203.1 MB Download
md5:157886954216ef1a25ff4a9981637f3f
9.9 MB Download
md5:f34ce0c73e642524815d94c470e96d02
9.9 MB Download
md5:3ac1078b02c20e1d7704ba75647c02b2
9.9 MB Download
md5:8c03a3466f2521d1687d8ffec7ed1d62
9.9 MB Download
md5:1031b4df750b75e9ac8929c6efb45168
9.9 MB Download
md5:d136ab0411ef1ee73f9699dc716a13df
9.9 MB Download
md5:a81d85199612902253afea769ec9bbfd
9.9 MB Download
md5:8e3e6d74576ec298c7847af1f5365bd2
9.9 MB Download
md5:ce24dec175f32aee8c23104c6be8459f
9.9 MB Download
md5:3f91d250dc889820d8dee29b0d154564
9.9 MB Download
md5:5a31a952f6645dd1d1e190d94be19a0d
9.9 MB Download
md5:146dcb44ce16e4ff54103300d5b91adc
9.9 MB Download
md5:beb1bcf9b2323b18b6e9cf1fef3241f9
9.9 MB Download
md5:9c8ce7a2c15425ed69a470f21e828dcc
9.9 MB Download

Additional details

Related works

Funding

U.S. National Science Foundation
Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis 2226383
U.S. National Science Foundation
Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis 2226451
National Institutes of Health
A Machine Learning Platform for Adaptive Chemical Screening R01GM135631
National Institutes of Health
Data-driven analysis of protein structure, function, and regulation R35GM119854

References

  • Sam Gelman, Bryce Johnson, Chase Freschlin, Sameer D'Costa, Anthony Gitter, Philip A Romero. Biophysics-based protein language models for protein engineering. bioRxiv, 2024. doi:10.1101/2024.03.15.585128