There is a newer version of the record available.

Published March 25, 2024 | Version 1.2
Dataset Open

Mineral spectral refractive index and bulk optical property dataset for aerosol studies

Creators

  • 1. Texas A&M University

Contributors

Project leader:

Project member:

  • 1. University of Wyoming
  • 2. Texas A&M University
  • 3. NASA Langley Research Center
  • 4. Kyungpook National University

Description

Version 1.2, updated 04/23/2024.
Major changes: 
Changed all the data file names to new format: "mix"+{property name}+{number}, rearranged the number of mixing samples

Updated all the bulk optical property data. This version use constant values of standard deviation in the lognormal size distribution settings for the coarse mode and the fine mode respectively.

The phase matrices are separated from the other bulk properties due to their large file sizes. The readme file is updated correspondingly. The information of scattering angles (498 angles in total) is uploaded as "TAMUdust2020_Angle.dat".

Added supplemental file data in 'Supplemental.tar.gz'.

Additional refractive indices are zipped in 'AdditionalRefInd.tar.gz'

Version 1.1, updated 03/14/2024.
Major changes: 
Added mixed bulk properties for "0 (99%coarse+1%fine)" and "11 (2.0 µm coarse+ 0.4 µm fine)";
Added "reff.dat" in the 'BulkProperties.tar.gz'. The data include four columns: fine mode fraction, bulk projected area <A>, bulk volume <V>, effective radius r_eff. The information is for mixed sample number 0 to 11, each corresponds to one row.
Added refractive indices for chlorite, mica, smectite, pyroxene, vermiculite and pyroxenes. These groups can be applied in some other models.

Version 1.0, uploaded 01/02/2024.

This database include supplemental data and files for the publication of this paper:

Sensitivities of Spectral Optical Properties of Dust Aerosols to their Mineralogical and Microphysical Properties. Yuheng Zhang, M. Saito, P. Yang, G. L. Schuster, and C. R. Trepte, J. Geophys. Res. Atmos. 2024.

 

*****************************************

The supplemental data include:

1) 'GroupRefInd.tar.gz' Mineral (group) refractive index files.
E. g., 1All_Illite.dat contains the complex refractive index files of illite group. Format (from left to right columns): Wavelength (unit: µm), Real part (n), Imaginary part (k), standard deviation of n, standard deviation of k.

The file 'fine_log.dat' includes the mean and standard deviation values of n and k for all the generated fine mode dust samples at 11,044 wavelengths from 0.2 to 50 micron.

The file 'fine_log127.dat' only includes the values at 127 wavelengths from 0.2 to 50 micron (defined in 'swav.txt' and 'lwav.txt'), and is used for the bulk property computations.

The files 'coarse_log.dat' and 'coarse_log127.dat' are for the coarse mode dust samples.

2) 'CompositionFraction.xlsx': Mineral composition data sources/references and composition data (mean and standard deviation values of each group).
'Vlog_coarse.dat': Randomly generated VOLUME FRACTION of 9 mineral groups for the coarse mode dust. Left to right: Illite, Kaolinite, Montmorillonite (Other clays), Quartz, Feldspar, Carbonate, Gypsum (Sulphate), Hematite, Goethite.

'Vlog_fine.dat': For the fine mode dust.

3) 'RefSources.xlsx': The data source references of mineral refractive indices. We didn't include the olivine, other silicates, soot and titanium-rich minerals in the paper, but the refractive indices are available for those who are interested. Chlorite, Mica and Vermiculite group are mentioned in some studies, and we included the refractive indices for these minerals as well.

4) 'DustSamples.tar.gz' Dust sample refractive index files.
The files are enclosed in four folders: fine_sw/ fine_lw/ coarse_sw/ coarse_lw/.

fine: fine mode. coarse: coarse mode.

'sw' means shortwave (< 4 µm, in total 76 wavelengths defined in 'swav.txt') while 'lw' means longwave (>= 4 µm, in total 51 wavelengths defined in 'lwav.txt').

All files start with 'rdn', which means that they are computed based on randomly generated composition (data given in sheet 2 of 'CompositionFraction.xlsx').

The four digit number after 'rdn' is the index of each dust sample. In total, there are 5,000 samples. The sample composition is the same for the same sample index in the same size mode (fine/coarse). Data file format (from left to right columns): real part, imaginary part.

5) 'BulkProperties.tar.gz' Bulk property files (excluding phase matrices)
'mixqx.dat' files format (from left to right columns): Extinction efficiency (Qext), Scattering efficiency (Qsca), Backscattering efficiency (Qbck), and Asymmetry coefficient (Qasy). To obtain asymmetry factor, use Qasy/Qsca.

'mixbkx.dat' files format (from left to right columns): P11(pi) P12(pi) P22(pi) P33(pi) P34(pi) P44(pi).

'x' refers to the number at the end of the file name. It can be 100 ~ 112, each represents a setting of coarse and fine mode effective radius and volume fraction (see details in "reff.dat")

'reff.dat' contains the effective radius information of the mixture. It has 7 columns: File number "x", Fine mode volume fraction, Fine mode effective radius (µm), Coarse mode effective radius (µm), Bulk projected area (µm^2), Bulk volume (µm^3), Bulk effective radius (µm).

6) 'PhaseMatrices.tar.gz' Phase matrices data
'mixphswx.dat' files contain phase matrix results at 532 nm (shortwave). From left to right: P11, P12, P22, P33, P34, P44.

'mixphlwx.dat' files contain phase matrix results at 10.5 µm (longwave).

There are 635,000 rows in each data file. 635,000 rows = 127 wavelengths * 5,000 samples. Row 1~127 is sample 1, row 128~254 is sample 2, etc.. Suggest to use matlab function 'reshape(property, 127, 5000)' for each column when processing the data.

7) 'Supplemental.tar.gz'

We also include data files mentioned in the supplemental file of the paper. The adjusted source data files of the nine mineral groups are included.

The supplemental bulk property files are named based on the figure number.

8) 'AdditionalRefInd.tar.gz'

We also include additional refractive indices for chlorite, smectite, vermiculite, mica, dolomite, titanium-rich minerals, pyroxenes and soot. These data can be useful in other models.

For more detailed information and datasets, please contact: Yuheng Zhang, yuheng98@tamu.edu or yuhengz98@qq.com.

Files

readme_v1.2.txt

Files (3.0 GB)

Name Size Download all
md5:0d684983a11297614802df30d5ce91bc
3.0 MB Download
md5:6d5c0c06ea208cdb81f648f4a8bc178c
468.6 MB Download
md5:45a77085dcf624146d8deb0e8097e80a
13.3 kB Download
md5:a3db95948d93b6cc8be35d22fc9205e3
5.3 MB Download
md5:074d03c03241329a0b7523d1f105c60b
2.2 GB Download
md5:03ae896228d50844b73cb601c0dea599
6.0 kB Preview Download
md5:02d751dcdcf3f74fc5859ac7ca1f92d5
12.5 kB Download
md5:0786013f12e0f40e55c401c45de2b57d
313.6 MB Download
md5:d838406a4cdd504103322171fc0d50cc
8.0 kB Download
md5:fda88be48f0713ab5a949ad8379d2c54
533.2 kB Download
md5:514e7585de4abfa6fb7b4e8979aae213
533.1 kB Download

Additional details

Dates

Updated
2024-04-23

References

  • Egan, W. G., & Hilgeman, T. W. (1979). Optical properties of inhomogeneous materials. New York: Academic Press, 235.
  • Querry, M. R. (1987). Optical constants of minerals and other materials from the millimeter to the UV, Rep. CRDEC-CR-88009, US Army, Aberdeen Proving Ground, MD.
  • Glotch, T. D., Rossman, G. R., & Aharonson, O. (2007). Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus, 192(2), 605-622. https://doi.org/10.1016/j.icarus.2007.07.002
  • Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., & Weinbruch, S. (2013). Bulk composition of northern African dust and its source sediments—A compilation. Earth-Science Reviews, 116, 170-194. https://doi.org/10.1016/j.earscirev.2012.08.005
  • Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., ... & Doussin, J. F. (2017). Global scale variability of the mineral dust long-wave refractive index: A new dataset of in-situ measurements for climate modeling and remote sensing. Atmospheric Chemistry and Physics, 17(3), 1901-1929. https://doi.org/10.5194/acp-17-1901-2017
  • Di Biagio, C., Boucher, H., Caquineau, S., Chevaillier, S., Cuesta, J., & Formenti, P. (2014). Variability of the infrared complex refractive index of African mineral dust: Experimental estimation and implications for radiative transfer and satellite remote sensing. Atmospheric Chemistry and Physics, 14(20), 11093-11116. https://doi.org/10.5194/acp-14-11093-2014
  • Long, L. L., Querry, M. R., Bell, R. J., & Alexander, R. W. (1993). Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared. Infrared Physics, 34(2), 191-201. https://doi.org/10.1016/0020-0891(93)90008-U
  • Longtin, D. R., Shettle, E. P., Hummel, J. R., & Pryce, J. D. (1988). A wind dependent desert aerosol model: Radiative properties (Vol. 88, No. 112). Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force.
  • Mooney, T., & Knacke, R. F. (1985). Optical constants of chlorite and serpentine between 2.5 and 50 μm. Icarus, 64(3), 493-502. https://doi.org/10.1016/0019-1035(85)90070-3
  • Mutschke, H., Begemann, B., Dorschner, J., Guertler, J., Gustafson, B., Henning, T., & Stognienko, R. (1998). Steps toward interstellar silicate mineralogy. III. The role of aluminium in circumstellar amorphous silicates. Astronomy and Astrophysics, v. 333, p. 188-198 (1998), 333, 188-198.
  • Peterson, J. T., & Weinman, J. A. (1969). Optical properties of quartz dust particles at infrared wavelengths. Journal of Geophysical Research, 74(28), 6947-6952. https://doi.org/10.1029/JC074i028p06947
  • Philipp, H. R. (1985). Handbook of optical constants of solids. San Diego: Academic Press, Inc. 719–747.
  • Querry, M. R. (1985). Optical constants, US Army CRDEC, Contractor Report, Aberdeen Proving Ground, MD.
  • Saito, M., Yang, P., Ding, J., & Liu, X. (2021). A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. Journal of the Atmospheric Sciences, 78(7), 2089-2111. https://doi.org/10.1175/JAS-D-20-0338.1
  • Toon, O. B., Pollack, J. B., & Sagan, C. (1977). Physical properties of the particles composing the Martian dust storm of 1971–1972. Icarus, 30(4), 663-696. https://doi.org/10.1016/0019-1035(77)90088-4
  • Zeidler, S., Posch, T., Mutschke, H., Richter, H., & Wehrhan, O. (2011). Near-infrared absorption properties of oxygen-rich stardust analogs-the influence of coloring metal ions. Astronomy & Astrophysics, 526, A68. https://doi.org/10.1051/0004-6361/201015219
  • Aronson, J. R., & Strong, P. F. (1975). Optical constants of minerals and rocks. Applied Optics, 14(12), 2914-2920. https://doi.org/10.1364/AO.14.002914
  • Arnold, J. A., Glotch, T. D., & Plonka, A. M. (2014). Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra. American Mineralogist, 99(10), 1942-1955. https://doi.org/10.2138/am-2014-4828
  • Bedidi, A., & Cervelle, B. (1993). Light scattering by spherical particles with hematite and goethitelike optical properties: effect of water impregnation. Journal of Geophysical Research: Solid Earth, 98(B7), 11941-11952. https://doi.org/10.1029/93JB00188
  • Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., ... & Formenti, P. (2016). Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmospheric Chemistry and Physics, 16(2), 1081-1104. https://doi.org/10.5194/acp-16-1081-2016
  • Fabian, D., Henning, T., Jäger, C., Mutschke, H., Dorschner, J., & Wehrhan, O. (2001). Steps toward interstellar silicate mineralogy-VI. Dependence of crystalline olivine IR spectra on iron content and particle shape. Astronomy & Astrophysics, 378(1), 228-238. https://doi.org/10.1051/0004-6361:20011196
  • Glasscock, J. A., Barnes, P. R. F., Plumb, I. C., Bendavid, A., & Martin, P. J. (2008). Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films, 516(8), 1716-1724. https://doi.org/10.1016/j.tsf.2007.05.020
  • Ghosh, G. (1999). Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics Communications, 163(1-3), 95-102. https://doi.org/10.1016/S0030-4018(99)00091-7
  • Glotch, T. D., & Rossman, G. R. (2009). Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 204(2), 663-671. https://doi.org/10.1016/j.icarus.2009.07.024
  • Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P., ... & Weinbruch, S. (2007). Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmospheric Environment, 41(37), 8058-8074. https://doi.org/10.1016/j.atmosenv.2007.06.047
  • Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H., Jäckel, S., ... & Weinbruch1, S. (2009). Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), 32-50. https://doi.org/10.1111/j.1600-0889.2008.00385.x
  • Kitamura, R., Pilon, L., & Jonasz, M. (2007). Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied optics, 46(33), 8118-8133. https://doi.org/10.1364/ao.46.008118
  • Lee, K. M., & Park, J. H. (2014). Optical constants for Asian dust in midinfrared region. Journal of Geophysical Research: Atmospheres, 119(2), 927-942. https://doi.org/10.1002/2013JD020207
  • Marra, A. C., Blanco, A., Fonti, S., Jurewicz, A., & Orofino, V. (2005). Fine hematite particles of Martian interest: Absorption spectra and optical constants. Journal of Physics: Conference Series, 6. http://doi.org/10.1088/1742-6596/6/1/013
  • Roush, T., Pollack, J., & Orenberg, J. (1991). Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite. Icarus, 94(1), 191-208. https://doi.org/10.1016/0019-1035(91)90150-R