Avaliação do efeito dos bioflocos produzidos com bactérias autóctones e com probióticos comercias no cultivo intensivo de camarão marinho Penaeus vannamei em sistema de baixa salinidade
Creators
- 1. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico-FUNCAP¹, Av. Oliveira Paiva, 941 – Cidade dos Funcionários – CEP: 60822-130 – Fortaleza, Brasil
- 2. Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará ², Av. da Abolição, 3207 - Meireles, CEP: 60165-081, Fortaleza-CE, Brasil
- 3. Agromais Comercial, Zona Rural SN – 5960000, Mossoró-RN, Brasil
Description
RESUMO| O objetivo do presente trabalho foi avaliar o efeito dos bioflocos formados com bactérias autóctones nitrificantes e probióticos comerciais na qualidade da água e no crescimento do camarão marinho Penaeus vannamei em sistema intensivo de baixa salinidade. O experimento foi conduzido com a avaliação de dois grupos experimentais: suplementado com probiótico comercial (BF-PC) e suplementado com bactérias probióticas autóctones (BF-PA). Nos resultados obtidos, os camarões cultivados com o tratamento BF-PA apresentaram maior taxa de sobrevivência, crescimento em peso médio, biomassa final e produtividade em comparação com os animais do tratamento BF-PC. As variáveis ambientais da água de cultivo (pH, oxigênio dissolvido e temperatura) apresentaram o mesmo comportamento nos tratamentos. Dessa forma, o uso de estirpes bacterianas autóctones nitrificantes no sistema de bioflocos, empregado no tratamento BF-PA, promoveu um ambiente mais estável o que refletiu numa melhora do desempenho zootécnico dos camarões.
ABSTRACT | The objective of the present work was to evaluate the effect of bioflocs formed with autochthonous nitrifying bacteria and commercial probiotics on water quality and the growth of marine shrimp Penaeus vannamei in an intensive low salinity system. The experiment was conducted with the evaluation of two experimental groups: supplemented with commercial probiotic (BF-PC) and supplemented with autochthonous probiotic bacteria (BF-PA). In the obtained results, shrimp cultivated with the BF-PA treatment showed higher survival rate, growth in average weight, final biomass and productivity compared to animals in the BF-PC treatment. The environmental variables of the cultivation water (pH, dissolved oxygen, and temperature) showed the same behaviour in the treatments. Therefore, the use of autochthonous nitrifying bacterial strains in the biofloc system, used in the BF-PA treatment, promoted a mores stable environment, which resulted in an improvement in the zootechnical performance of the shrimp.
Files
AT0102 Saldanha et al.pdf
Files
(695.1 kB)
Name | Size | Download all |
---|---|---|
md5:37d0df48482557d005c69c2018856d96
|
695.1 kB | Preview Download |
Additional details
Additional titles
- Translated title
- Evaluation of the effect of bioflocs produced with autochthonous bacteria and commercial probiotics in the intensive cultivation of marine shrimp Penaeus vannamei in a low salinity system.
Dates
- Submitted
-
2022-04-25
- Accepted
-
2024-03-31
- Available
-
2024-04-10
References
- Altschul S F., Madden T L., Schaffer A A., Zhang J., Miller W., Lipman D J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:17:3389-3402.
- Arias-Moscoso J L., Espinoza-Barrónb,L G., Miranda-Baezab,A., Rivas-Vegab M E., Nieves-Sotod M. (2018). Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zero water Exchange. Aquaculture Reports 11:47–52.
- Avnimelech Y. (1999). Carbonrnitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235.
- Avnimelech Y. Biofloc technology: a practical guide book. The World Aquaculture Society, Baton Rouge, Louisiana, 182 pp., 2009.
- Boyd C E (2002). Dissolved Salts in Water for Inland, Low-salinity Shrimp Culture. Special Research Article 40-45.
- Cavalheiro T. B., Conceição M M., Ribeiro T. T B. C. (2016). Crescimento do camarão Litopenaeus vannamei em viveiros e tanques utilizando efluente do processo de dessalinização. Gaia Scientia 10:4:319-337.
- Crab R., Avnimelech Y., Defoirdt, T., Bossier P., Verstraete W. (2007). Nitrogen removal in aquaculture for a sustainable production. Aquaculture 270:1-14.
- Christensen G D., Simpson, W A., Younger, J J., Baddour, L M., Barrett, F F., Melton, D M. (1985). Adherence of coagulase- negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology 22:996-1006.
- Clesceri L. S., Greenberg A E., Eaton A D. (1998) Standard methods for the examination of water and wastewater (20thed.). Washington, DC: American Public Health Association,
- Davis D. A., Boyd C. E., Rouse D. B. (2005). Effects of potassium, magnesium and age on growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity well waters in West Alabama. Journal of World Aquaculture Society 36:3:416-419.
- FAO 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
- Fávero L P., Belfiore, P., Silva, F L., Chan, B L. (2009). Análise de dados: modelagem multivariada para tomada de decisões. Rio de Janeiro: Elsevier.
- Franco I. (2009) Isolamento, identificação e caracterização molecular de bactérias candidatas a probióticos em organismos aquáticos. Disertaçao (Mestrado em Ciências animais). Universidade Federal da Bahia. Salvador, Bahia.
- Ferreira, M G P., Melo, F P., Lima, J P V., Andrade, H A., Severi, W., Correia, E S. (2017). Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Latin American Journal of Aquatic Research 45:1:167-176.
- Freeman D. J., Falkiner F. R., Keane C T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology 42:872-874.
- Gaona C A P., Viau V., Poersch L H., Wasielesky Jr. W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research 48:1070–1079.
- González-Félix M., Gómez-Jiménez S., Perez-Velazquez M., Davis D A., Velazco-Rameños J. G. (2007). Nitrogen budget for a low salinity, zro-water Exchange culture system: I. Effect os dietary protein level on the performance if Litopenaeus vannamei (Boone). Aquaculture Research 38:798-808.
- Jaime-Ceballos B., Cabrera-Machado J. E., Vega-Villasante F. (2012). Cultivo tierra adentro de camarón marino Litopenaeus vannamei: evaluación del agua de dos granjas acuícolas en Cuba REDVET. Revista Electrónica de Veterinaria,13:6:1-17.
- Li E., Wang X., Chen K., Xu C., Qin J G., Chen L. (2017). Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Review Aquaculture 7: 1–19.
- Liu, P C., Lee, K K., Chen, S N. (1996). Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon. Letter in Applied Microbiology 22:413-416.
- Maia, E P., Alves-Modesto, G., Brito, L O., Oliveira, A., Gesteira, T C V. (2013). Effect of a commercial probiotic on bacterial and phytoplankton concentration in intensive shrimp farming (Litopenaeus vannamei) recirculation systems. Latin American Journal of Aquatic Research 41:126-137.
- Marín J. C., Castro E., Behling E., Colina G., Díaz L., Rincón N. (2012). Nitrobacterias em reactores biológicos rotativos de controle (CBC) de três cámaras bajo diferentes cargas orgânicas. Revista Tecnocientífica URU 2:71-82.
- Martínez-Cordova L. R., Martínez-Porchas M., Emerenciano M. M. G. C., Miranda-Baeza A., Gollas-Galvan T. (2017). From microbes to fish the next revolution in food production. Critical Reviews in Biotechnology 37:287–295.
- Moura P S., Wasielesky Jr. W., Serra F P., Bragab A., Poersch L. (2021). Partial seawater inclusion to improve Litopenaeus vannamei performance in low salinity biofloc systems. Aquaculture 531:3:1-8.
- Neto I A., Brandão H., Furtado P S., Wasielesky Junior W. (2019). Acute toxicity of nitrate in Litopenaeus vannamei juvniles at low salinity levels. Ciência Rural 49:01:1-9.
- Panigrahi A., Saranyaa C., Sundarama M., Kannana S. R .V., Dasa R. R., Kumarb R S., Rajesha P., Otta S K. (2018). Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish and Shellfish Immunology 81:329–337.
- Panigrahi A., Das R. R., Sivakumar M. R., Saravanan A., Saranya C., Sudheer,N S., Vasagam K. P. L. K., Mahalakshmi P., Kannappan S., Gopikrishna G. (2020). Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish and Shellfish Immunology 98:477–487.
- Pereira C., Silva Y. J., Santos A. L., Cunha A., Gomes N. C. M., Almeida A. (2011). Bacteriophages with Potential for Inactivation of Fish Pathogenic Bacteria: Survival, Host Specificity and Effect on Bacterial Community Structure. Marine Drugs 9:2236-2255.
- Pinto P. H. O., Rocha J. L., Figueiredo J. P. V., Carneiro R. F. S., Damian C., Olieveira L., Seiffert W. Q. (2020). Culture of marine shrimp (Litopenaeus vannamei) in biofloc technology system using artificially salinized freshwater: Zootechnical performance, economics and nutritional quality. Aquaculture 520:1-6.
- Rodrigues D. P., Ribeiro R .V., Alves R. M., Hofer E. (1993). Evaluation of virulence factors in environmental isolates of Vibrio species. Memórias do Instituto Oswaldo Cruz 88:4:589-592.
- Sá M. V. C. (2012)Limnocultura: limnologia para aquicultura. Fortaleza: Edições UFC, 218 p.
- Salência H. R., Mouriño J. L. P., Ferreira G. S., Arantes R. F., Ubert M., Lapa K. R., Seiffert, W. Q. (2016). A bioaugmentation agent in super intensive marine shrimp farming system with zero water exchange, Journal of Aquaculture Research & Development 7:2:1-7.
- Samocha T. M., Patnaik S., Speed M., Ali A. M., Burger J. M., Almeida R .V., Ayub Z., Harisanto M., Horowitz,A., Brock,D .L. (2007). Use of molasses as carbon source in limited discharge nursery and growout systems for Litopenaeus vannamei. Aquacultural Engineering 36: 184-191.
- Santos N. B. V., Furtado P. S., César D. E., Wasielesky Jr. W. (2019). Assessment of the nitrification process in a culture of pacific white shrimp, using artificial substrate and bacterial inoculum in a biofloc technology system (BFT). Animal Production. Ciência Rural 49:6:1-10.
- Silva J. L. S. (2018). Domesticação do perifíton no cultivo de juvenis de tilápia do Nilo (Oreochromis niloticus). 2018. Tese (Doutorado em Engenharia de Pesca) – Universidade Federal do Ceará, Fortaleza.
- Silva J. L. S., Cavalcante D. H., Carvalho F. C. T., Vieira R. H. S. F., Sá M. V. C., Sousa O. V. (2016). Aquatic microbiota diversity in the culture of Nile tilapia (Oreochromis niloticus) using bioflocs or periphyton: virulence factors and biofilm formation. Acta Scientiarum Animal Sciences, 38:3:233-241.
- Silva J. L. S., Rodríguez M. T. T., Sousa O. V. (2020). Efecto de la adición de bacterias nitrificantes autóctonas en la formación de bioflococs para la mejoría de la calidad del agua de cultivo de organismos acuáticos. Brazilian Journal of Development 6:6:33870-33891.
- Soares D. C. E., Silva J. L. S., Abreu J. O., Sousa O. V. (2021). Preliminary evaluation of the use of bacteria isolated from the digestive tract of shrimp Litopenaeus vannamei as a source to accelerate the process of formation and development of bioflocs. Acta Scientiarum. Animal Sciences 43:1:1-7.
- Teather R.M., Wood P. J. (1982). Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rument. Applied and Environmental Microbiology 43:40:777-780.
- Zhang T., Fang H. H. P. (2001). Phylogenetic diversity of a SRB-rich marine biofilm. Applied Microbiology and Biotechnology 57:437-440.
- Yoshida K., Nasu Y., Shitami N., Toyoda H., Takemura H., Oomori K. (2009). A novel convenient method for high bacteriophage titer assay. Nucleic Acids Symposium Series 53:315-6.