Phase transitions - A Forrest Gump-like account on AI 1984-2024 - Valedictory lecture - March 8th, 2024 - Lambert Schomaker
Contributors
Researcher:
Description
Valedictory lecture of prof. dr. Lambert Schomaker, in the Doopsgezinde Kerk, Groningen, on March 8th, 2024.
Video recording with English subtitles, accompanying slides as Powerpoint and PDF file.
Afternoon program (presentations by colleagues and PhD students were in the morning session).
00:00:00 Opening by prof. Raffaella Carloni
00:00:36 prof. Niels Taatgen, director of the Bernoulli Institute and colleague in the AI department [Liber Amicorum]
00:04:56 prof. Rineke Verbrugge, colleague in the AI department [Academy Plaque]
00:09:11 Valedictory lecture by prof. Lambert Schomaker
Phase transitions - A Forrest Gump-like account on AI 1984-2024
00:09:24 Slide #2
00:10:16 Slide #4 Electronics & Cybernetics
00:11:19 Slide #5 VAX/VMS, Fortran, Lisp, Margaret Boden, Grey Walter, Carlo de Luca (machines, AI,brain)
00:13:49 Slide #7 Symbolic AI
00:14:38 Slide #8 EU Esprit projects on handwriting recognition, failures of symbolic paradigm
00:16:10 Slide #9 Rumelhart & McClelland
00:17:07 Slide #10 Elman already did it (neural language model)
00:19:17 Slide #11 Dissertation: recurrent and spiking NNs
00:21:29 Slide #12 Yann LeCun/Montreal
00:24:05 Slide #13 Isabelle Guyon/SVMs
00:26:19 Slide #14 Neural network winter
00:27:24 Slide #15 Administration
00:30:01 Slide #16 HMM ==> LSTM, Demise of HMMs ('a scientific urban legend')
00:33:07 Slide #18 Divergence in HMM training
00:35:16 Slide #19 LSTM ==> Transformers
00:35:53 Slide #20 PhD students, overview
00:36:42 Slide #21
00:37:00 Slide #22 Current PhD students
00:37:43 Slide #23 Hinge
00:38:24 Slide #25 DeepOtsu
00:38:33 Slide #26 BiNet, Isaiah Scrolls
00:38:48 Slide #27 Curriculum learning in reinforcement learning
00:40:22 Slide #28 Generative Adversarial Networks
00:45:58 Slide #31 Latest LLM: Claude 3 by Anthropic
00:48:50 Slide #33 HAICu (digital humanities) and CogniGron (neuromorphic computing)
00:51:11 Slide #34
00:53:01 Slide #35 Valuation of the current state in brains
00:54:39 Slide #36 the most dangerous creature around will be the human
00:55:46 Slide #37 When will AI be dangerous?
00:57:17 Slide #38 AI (RL) helping to control nuclear fusion
00:58:27 Slide #40 Words of thanks
01:06:44 End
Files
2024 03 08 Recording Valedictory Lecture Lambert Schomaker.mp4
Additional details
Dates
- Issued
-
2024-03-08Presentation
References
- Frank, H. (1964). Kybernetische Maschinen: Prinzip und Anwendung der automatischenNachrichtenverarbeitung, Fischer Verlag
- Boden, M.A. (1987). Artificial Intelligence and Natural Man (2nd ed.). Basic Books
- Walter, G.W. (1961) The livingbrain. Pelican Books.
- VAX/VMS Software: VMS System Software Handbook, Digital Equipment Corporation (1985).
- Schomaker, L., Thomassen, A. J. W. M., & Teulings, H.-L. (1987). A computational model of cursive handwriting. In R. Plamondon, C. Y. Suen, & J. G. Deschenes (Eds.), Proceedings of the Third International Symposium on Handwriting and Computer Applications (pp. 5-7).
- Rumelhart, D. E., McClelland, J. L., & The PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition: Foundations. MIT Press, Vol 1 (blue) + 2 (brown) +Student book (yellow) and diskette.
- Schomaker, L.R.B. (1991). Simulation and recognition of handwriting movements: a vertical approach to modeling human motor behavior, dissertation, Radboud University Nijmegen (NICI). https://repository.ubn.ru.nl/handle/2066/113914
- Schomaker, L.R.B. (1992). A neural oscillator-network model of temporal pattern generation, Human Movement Science, Volume 11, Issues 1–2, February 1992, Pages 181-192https://doi.org/10.1016/0167-9457(92)90059-K
- Elman, J. L. (1990). Finding structure in time.Cognitive Science, 14(2), 179–211https://doi.org/10.1016/0364-0213(90)90002-E |
- Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D., & Baird, H. S. (1990). Constrained neural network for unconstrained handwritten digit recognition. In C. Suen (Ed.), Frontiers in Handwriting Recognition, Montreal, 1990 CENPARMI, Concordia University.
- Boser, B., Guyon, I., Vapnik, V. (1992). Atraining algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh.
- Alex Graves, Santiago Fernández, Marcus Liwicki, Horst Bunke, and Jürgen Schmidhuber (2007). Unconstrained online handwriting recognition with recurrent neural networks. In Proceedings of the 20th Int. Conf. on Neural Information Processing Systems (NIPS'07). Curran Associates Inc., Red Hook, NY, USA, 577–584.
- van Oosten, J.-P. (2021). The snowball principle for handwritten word-image retrieval: The importance of labelled data and humans in the loop. [dissertation]. University of Groningen. https://doi.org/10.33612/diss.160750597
- Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recognition with Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. 2013 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE. https://doi.org/10.1109/asru.2013.6707742
- Velich, Maximilian (2022) Context is All You Need: Comparing Transformer-based to RNN-based Models in a Handwritten Text Recognition Task. Master's Thesis, Artificial Intelligence, https://fse.studenttheses.ub.rug.nl/27947/
- Y. Chen, H. Kasaei, L. Schomaker and M. Wiering, "Reinforcement Learning with Potential Functions Trained to Discriminate Good and Bad States," 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-7, doi: 10.1109/IJCNN52387.2021.9533682.
- Cipollini, D. & Schomaker, L.R.B. (2023). Neuromorphic Comput. Eng. 3, 034001, DOI 10.1088/2634-4386/acd6b3
- Schomaker, L., Timmermans, J., & Banerjee, T. (2023). Non-linear adaptive control inspired by neuromuscular systems. In Bioinspiration & Biomimetics (Vol. 18, Issue 4, p. 046015). IOP Publishing. https://doi.org/10.1088/1748-3190/acd896
- Bulacu, M. & Schomaker, L. (2007). Text-Independent Writer Identification and Verification Using Textural and Allographic Features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 701-717
- Dijkstra, K., van de Loosdrecht, J., Atsma, W. A., Schomaker, L. R. B., & Wiering, M. A. (2021). CentroidNetV2: A hybrid deep neural network for small-object segmentation and counting. In Neurocomputing (Vol. 423, pp. 490–505). Elsevier BV. https://doi.org/10.1016/j.neucom.2020.10.075
- He, S., Samara, P., Burgers, J., & Schomaker, L. (2016). A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization. In IEEE Transactions on Image Processing (Vol. 25, Issue 11, pp. 5252– 5265). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tip.2016.2602078
- He, S., & Schomaker, L. (2019). DeepOtsu: Document enhancement and binarization using iterative deep learning. In Pattern Recognition (Vol. 91, pp. 379–390). Elsevier BV. https://doi.org/10.1016/j.patcog.2019.01.025
- Popović, M., Dhali, M. A., & Schomaker, L. (2021). Artificial intelligence based writer identification generates new evidence for the unknown scribes of the Dead Sea Scrolls exemplified by the Great Isaiah Scroll (1QIsaa). In D. R. Amancio (Ed.), PLOS ONE (Vol. 16, Issue 4, p. e0249769). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0249769
- Luo, S., Kasaei, H., & Schomaker, L. (2020). Accelerating Reinforcement Learning for Reaching Using Continuous Curriculum Learning. In 2020 International Joint Conference on Neural Networks (IJCNN). 2020 International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn48605.2020.9207427 https://www.youtube.com/watch?v=WY-1EbYBSGo
- Zhang, Z., & Schomaker, L. (2021). DTGAN: Dual Attention Generative Adversarial Networks for Text-to- Image Generation. In 2021 International Joint Conference on Neural Networks (IJCNN). 2021 International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn52387.2021.9533527
- Zhang, Z., & Schomaker, L. (2022). DiverGAN: An Efficient and Effective Single-Stage Framework for Diverse Text-to-Image Generation. Neurocomputing (Vol. 473, pp. 182–198). Elsevier, DOI: 10.1016/j.neucom.2021.12.005
- Brooks, R. A. (1990). Elephants don't play chess. In Robotics and Autonomous Systems (Vol. 6, Issues 1–2, pp. 3–15). Elsevier BV. https://doi.org/10.1016/s0921-8890(05)80025-9
- Schomaker, L. (2020). From Boston to Eden - or how to get systems that are really autonomous and sufficiently intelligent to survive in their niche [lecture] https://zenodo.org/records/3757369
- Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., … Riedmiller, M. (2022). Magnetic control of tokamak plasmas through deep reinforcement learning. Nature (Vol. 602, Issue 7897, pp. 414–419). Springer Science and Business Media LLC. https://doi.org/10.1038/s41586-021-04301-9