Published April 30, 2024
| Version v1
Dataset
Open
Global soil organic carbon in tidal marshes version 1
Creators
- Maxwell, Tania L.1, 2
- Spalding, Mark D.1, 3
- Friess, Daniel A.4
- Murray, Nicholas J.5
- Rogers, Kerrylee6
- Rovai, André S.7, 8
- Smart, Lindsey S.3, 9
- Weilguny, Lukas10, 11
- Adame, M. Fernanda12
- Adams, Janine B.13
- Austin, William E.N.14, 15
- Copertino, Margareth S.16, 17
- Cott, Grace M.18
- Duarte de Paula Costa, Micheli19
- Holmquist, James R.20
- Ladd, Cai J.T.21, 22
- Lovelock, Catherine E.23
- Ludwig, Marvin24
- Moritsch, Monica M.25
- Navarro, Alejandro5
- Raw, Jacqueline L.13, 26
- Ruiz-Fernández, Ana-Carolina27
- Serrano, Oscar28
- Smeaton, Craig29
- Van de Broek, Marijn30
- Windham-Myers, Lisamarie31
- Landis, Emily3
- Worthington, Thomas1
- 1. University of Cambridge
- 2. International Institute for Applied Systems Analysis
- 3. The Nature Conservancy
- 4. Tulane University
- 5. James Cook University
- 6. University of Wollongong
- 7. U.S. Army Engineer Research and Development Center
- 8. Louisiana State University
- 9. North Carolina State University
- 10. University of Vienna
- 11. European Molecular Biology Laboratory
- 12. Griffith University
- 13. Nelson Mandela University
- 14. School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- 15. Scottish Association of Marine Science, Oban, UK
- 16. Universidade Federal do Rio Grande
- 17. Brazilian Network of Climate Change Studies - Rede CLIMA
- 18. University College Dublin
- 19. Deakin University
- 20. Smithsonian Environmental Research Center
- 21. Swansea University
- 22. Bangor University
- 23. University of Queensland
- 24. University of Münster
- 25. Environmental Defense Fund
- 26. Anthesis South Africa
- 27. Universidad Nacional Autónoma de México
- 28. Centre d'Estudis Avançats de Blanes
- 29. University of St Andrews
- 30. Swiss Federal Institute of Technology (ETH Zürich)
- 31. U.S. Geological Survey
Description
This dataset is the first version of the predictions, expected model error, and area of applicability of the global soil organic carbon in tidal marshes at a 30 m resolution. All methods are provided in detail in the accompanying Nature Communications paper, Maxwell et al. (2024) Soil carbon in the world's tidal marshes.
Tidal marsh extent map
- Worthington et al. (2023) The distribution of global tidal marshes from earth observation data. bioRxiv.
Training data
- Maxwell et al. (2023) Global dataset of soil organic carbon in tidal marshes. Scientific Data.
- Holmquist et al. (2024) The Coastal Carbon Library and Atlas: Open source soil data and tools supporting blue carbon research and policy. Global Change Biology.
- Citations for the training data from the above-mentioned syntheses are available here.
Model
- Code available on Github.
- 3D soil modelling approach: Hengl & MacMillan (2019). Predictive Soil Mapping with R.
- Random forest model: Kuhn (2008). Building Predictive Models in R Using the caret Package. J. Stat. Softw.
- k-NNDM spatial cross validation: Meyer, Milà & Ludwig (2022). CAST: ‘caret’ Applications for Spatial-Temporal Models.
- Area of applicability: Meyer & Pebesma (2022). Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications.
Description of files
- GRID.zip: shapefile with the location of each tile in the zipped folders below
- Final_predicted_SOC_both_layers.png: final predicted tidal marsh soil organic carbon (SOC) for a) the 0-30 cm soil layer and b) the 30-100 cm soil layer (aggregated per 2° cell).
Area of applicability
- aoa0.zip: the area of applicability (AOA) mask for the 0-30 cm layer. Pixels with an AOA value of 0 or 0.5 are considered outside the AOA; with an AOA value of 1 are considered inside the AOA.
- aoa30.zip: the area of applicability (AOA) mask for the 30-100 cm layer. Pixels with an AOA value of 0 or 0.5 are considered outside the AOA; with an AOA value of 1 are considered inside the AOA.
Final predictions and expected error
- pred0_aoa.zip: predicted soil organic carbon for the 0-30 cm layer (Mg C ha-1), masked by the area of applicability.
- pred30_aoa.zip: predicted soil organic carbon for the 30-100 cm layer (Mg C ha-1), masked by the area of applicability.
- err0_aoa.zip: expected model error for the 0-30 cm layer (Mg C ha-1), masked by the area of applicability.
- err30_aoa.zip: expected model error for the 30-100 cm layer (Mg C ha-1), masked by the area of applicability.
Initial predictions and expected error
- pred0.zip: predicted soil organic carbon for the 0-30 cm layer (Mg C ha-1).
- pred30.zip: predicted soil organic carbon for the 30-100 cm layer (Mg C ha-1).
- err0.zip: expected model error for the 0-30 cm layer for all tidal marsh extent pixels (Mg C ha-1).
- err30.zip: expected model error for the 30-100 cm layer for all tidal marsh extent pixels (Mg C ha-1).
Files
Final_predicted_SOC_both_layers.png
Files
(838.2 MB)
Name | Size | Download all |
---|---|---|
md5:29300bcf9212fb4bc099fc9e90f72c28
|
57.2 MB | Preview Download |
md5:6d5968aec19616eb2fd407de85832dac
|
57.8 MB | Preview Download |
md5:0aab5cf3af88d75535362eeb698e64eb
|
89.1 MB | Preview Download |
md5:cb94e7ab126897726214348537dd02a4
|
68.8 MB | Preview Download |
md5:5c18f9ffa0b6c4209000a4ab09c8e45a
|
100.9 MB | Preview Download |
md5:cf9ebd4e3e30a2e52693fabf743ad59d
|
67.1 MB | Preview Download |
md5:79937c797e1a32a1e74e99535434127b
|
122.9 kB | Preview Download |
md5:f54a41c56bbb210b43d0ccd2d02ca490
|
7.3 kB | Preview Download |
md5:5c1c6d729661b9f77331cab68e152aa9
|
116.4 MB | Preview Download |
md5:c811cb04251d41659a20c0e88d9eea48
|
82.7 MB | Preview Download |
md5:e54747aabc86bd878ac32c0709817032
|
124.8 MB | Preview Download |
md5:c4c5e446aab814b7e90f24e02ccaca3f
|
73.5 MB | Preview Download |
md5:56b5bd76365353ab980351d8d6a707c8
|
1.5 kB | Preview Download |
Additional details
Related works
- Is described by
- Journal: 10.1038/s41467-024-54572-9 (DOI)
Software
- Repository URL
- https://github.com/Tania-Maxwell/global-marshC-map