Published January 20, 2008
| Version 15541
Journal article
Open
Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm
Description
The objective of this study is to present the test
results of variable air volume (VAV) air conditioning system
optimized by two objective genetic algorithm (GA). The objective
functions are energy savings and thermal comfort. The optimal set
points for fuzzy logic controller (FLC) are the supply air temperature
(Ts), the supply duct static pressure (Ps), the chilled water
temperature (Tw), and zone temperature (Tz) that is taken as the
problem variables. Supply airflow rate and chilled water flow rate are
considered to be the constraints. The optimal set point values are
obtained from GA process and assigned into fuzzy logic controller
(FLC) in order to conserve energy and maintain thermal comfort in
real time VAV air conditioning system. A VAV air conditioning
system with FLC installed in a software laboratory has been taken for
the purpose of energy analysis. The total energy saving obtained in
VAV GA optimization system with FLC compared with constant air
volume (CAV) system is expected to achieve 31.5%. The optimal
duct static pressure obtained through Genetic fuzzy methodology
attributes to better air distribution by delivering the optimal quantity
of supply air to the conditioned space. This combination enhanced
the advantages of uniform air distribution, thermal comfort and
improved energy savings potential.
Files
15541.pdf
Files
(623.3 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:e378703249ff3872784048b8fba52e27
|
623.3 kB | Preview Download |
Additional details
References
- Tim Salsbury, Rick Diamond, "Performance validation and energy analysis of HVAC systems using simulation", Energy and Buildings, vol. 32, pp. 5 - 17, 2000.
- Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom, "Improving Air Temperature Prediction with Artificial Neural Networks", International Journal of Computational Intelligence, vol 3, pp. 179 - 186, 2006.
- Jian Sun and Agami Reddy, "Optimal control of building HVAC&R systems using complete simulation-based sequential quadratic programming (CSB-SQP)", Building and Environment, vol. 40, pp. 657 - 669, 2005.
- L. G. Caldas, L. K. Norford, "Genetic algorithms for optimization of building envelopes and the design and control of HVAC systems", Journal of solar energy engineering, Transactions of the ASME, 2003.
- T. T. Chow, Z. Lin and C. L. Song, G. Q. Zhang, "Applying neural network and genetic algorithm in chiller system optimization", Seventh International IBPSA Conference, Brazil, 2001.
- Jonathan A. Wright, A. Heather, Loosemore, Raziyeh Farmani. "Optimization of building thermal design and control by multi-criterion genetic algorithm", Energy and Buildings, 34, pp. 959 - 972, 2002.
- Johnny N.Holst, "Using whole building simulation models and optimizing procedures to optimize building envelope design with respect to energy consumption and indoor environment", Eigth International Conference, 2003.
- Yung-Chung Chang, Jui-Kun Lin, Meng-Hsuan Chuang, "Optimal chiller loading by genetic algorithm for reducing energy consumption", Energy and Buildings, vol. 37, pp.147 - 155, 2005.
- Rafael Alcala, Antonio Gonzalez, Francisco Herrera, Jorge Casillas, Oscar Cordon, "A genetic rule weighting and selection process for fuzzy control of heating, ventilation and air conditioning systems", Engineering Applications of Artificial Intelligence, vol. 18, 279 - 296, 2005. [10] Lu Lu and Wenjian Cai, "Application of genetic algorithms for optimal chiller selection in HVCA systems", 13th Int.Conference on Process Control, 2001. [11] C. Aprea, C. Renno, R. Mastrullo, "Fuzzy control of the compressor speed in a refrigeration plant", International Journal of Refrigeration, vol. 27, pp. 639 - 648. 2004. [12] S. Wang, X. Jin, "Model-based optimal control of VAV airconditioning system using genetic algorithm", Building and Environment, vol. 35, pp. 471 - 487, 2000. [13] Timothy J.Ross (1995.), Fuzzy logic with engineering applications, Mc Graw Hill, Inc. [14] Igor Skrjanc, Borut Zupancic, Bostjan Furlan and Alas Krainer, "Theoretical and experimental fuzzy modeling of building thermal dynamic response", Building and Environment, vol. 36, 1023-1038, 2001.