Published March 19, 2024 | Version v1
Data paper Open

Exploring the impact of partial pressure and typical compounds on the continuous electroconversion of CO2 into formate

Abstract (English)

Previous research in CO2 electroreduction primarily focused on cathodic electrocatalysts and electrode configurations using pure CO2. Few studies explored the impact of residence time and N2/O2 compounds, crucial for practical industrial implementation. In this study, the effect of residence time and the influence of N2 and O2 compounds on CO2 electroreduction to formate are investigated, employing Bi carbon-supported nanoparticles in the form of Gas Diffusion Electrodes within an electrochemical flow reactor with a single pass of the reactants. The results highlight the critical role of residence time and the impact of N2 and O2 compounds in the CO2 electroconversion process. On the one hand, the evaluation of residence time holds paramount significance for the potential establishment of a large-scale CO2 recycling plant, as it has the potential to significantly impact both the capital and operational costs of the integrated electrolyzer-separator system. Optimal results are obtained in the range of residence times between 1.8 and 2.9 seconds, corresponding to CO2 flow rates of 150 and 250 mL·min−1, respectively. On the other hand, the study resulted in a promising Faradaic Efficiency for formate of 75.0%, with similar values achieved at CO2 concentrations in the range of 75 – 100 vol%. These results are particularly noteworthy as they demonstrate that achieving a CO2 capture efficiency of 100% is not necessary, thereby reducing the costs associated with this process and, consequently, the overall cost of integrating both capture and utilization processes in a CO2 recycling plant.

Notes (English)

The authors fully acknowledge the financial support received from the Spanish State Research Agency (AEI) through the projects PID2020–112845RB-I00, TED2021–129810B-C21, and PLEC2022–009398 (MCIN/AEI/10.13039/501100011033 and Unión Europea Next Generation EU/PRTR). This project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101118265. Jose Antonio Abarca gratefully acknowledges the predoctoral research grant (FPIPRE2021–097200. We are also grateful for the Bi carbon-supported nanoparticles prepared and provided by the group of Prof. V. Montiel and Dr. José Solla-Gullón from the Institute of Electrochemistry of the University of Alicante.

Files

Files (15.3 kB)

Name Size Download all
md5:e192e115c64e9dfb5aab5b63baacc39a
15.3 kB Download

Additional details

Related works

Is published in
Data paper: 2212-9839 (ISSN)

Dates

Accepted
2024-03-11
Available
2024-03-19