Published March 19, 2024 | Version 2
Dataset Open

Organic Matter, Geochemical, Visible Spectrocolorimetric Properties, Radiocesium Properties, and Grain Size of Potential Source Material, Target Sediment Core Layers and Laboratory Mixtures for Conducting Sediment Fingerprinting Approaches in the Mano Dam Reservoir (Hayama Lake) Catchment, Fukushima Prefecture, Japan

  • 1. EDMO icon CEA, Climate and Environmental Sciences Laboratory
  • 2. ROR icon Laboratoire des Sciences du Climat et de l'Environnement
  • 3. ROR icon National Institute for Environmental Studies
  • 4. ROR icon Institut d'écologie et des sciences de l'environnement de Paris
  • 5. ROR icon Sorbonne Université
  • 6. Institue of Environmental Radioactivity (IER), University of Fukushima, Fukushima, Japan
  • 7. ROR icon Kyoto Prefectural University
  • 8. Environmental Monitoring and Science Division, Alberta Environment and Parks, 3115-12 Street NE, Calgary, Alberta, Canada
  • 9. Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Japan

Description

The current dataset was compiled to study sediment fingerprintings practices, i.e tracer selection and contribution modelling. Organic matter, elemental geochemistry, visible difuse spectrocolorimetric properties, radiocesium properties, and grain size were analysed were analysed in potential source material that may supply sediment to coastal rivers, here the upper part of the Mano river, draining the main Fukushima radioactive pollution plume (Japan). Four potential soil source materials (n = 68) were considered: undecontaminated cropland (n = 24), as non-decontaminated soil before the application of local decontamination policies, remediated cropland (n = 10), as decontaminated soil after the application of local decontamination policies, forest soils (n = 24) and subsurface material originating from channel bank collapse or landslides (n = 10; referred to as subsoil). A sediment core was collected in the Mano Dam lake (Hayama lake) on the 6th June 2021 and was sectionned into 1-cm layers (n = 38). Laboratory mixtures (n = 27) were made to assess different contribution levels from the sources.

The current dataset comprises four .csv files including data and metadata information and their respective descriptions of variables. The data set is composed of soil samples, sediment core layer and laboratory mixtures. Laboratory mixtures were prepared to provide a dataset to calibrate/validate un-mixing models implemented to address this research question and analysed in the same conditions and using the same equipment as the source/target material.

Files

Introduction_MDD_20210608_database_ChalauxClergue_et_al_v240319.pdf

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.10725788 (DOI)

References

  • Agnihotri, R., Kumar, R., Prasad, M., Sharma, C., Bhatia, S., & Arya, B. (2014). Experimental setup and standardization of a continuous flow stable isotope mass spectrometer for measuring stable isotopes of carbon, nitrogen and sulfur in environmental samples. Mapan, 29 , 195–205.
  • Batista, P., Laceby, J., & Evrard, O. (2022). How to evaluate sediment fingerprinting source apportionments. Journal of Soils and Sediments, 22 , 1315–1328.
  • Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302 , 236–238.
  • Debret, M., Sebag, D., Desmet, M., Balsam, W., Copard, Y., Mourier, B., Susperrigui, A.-S., Arnaud, F., Bentaleb, I., Chapron, E. et al. (2011). Spectrocolorimetric interpretation of sedimentary dynamics: The new "q7/4 diagram". Earth-Science Reviews, 109 , 1–19.
  • Evrard, O., Batista, P. V., Dabrin, A., Foucher, A., Frankl, A., Garc´ıa-Comendador, J., Huguet, A., Lake, N., Lizaga, I., Mart´ınez-Carreras, N. et al. (2022). Improving the design and implementation of sediment fingerprinting studies: Summary and outcomes of the tracing 2021 scientific school. Journal of soils and sediments, (pp. 1–14).
  • Evrard, O., Chartin, C., Laceby, J. P., Onda, Y.,Wakiyama, Y., Nakao, A., Cerdan, O., Lepage, H., Jaegler, H., Vandromme, R. et al. (2021). Radionuclide contamination in flood sediment deposits in the coastal rivers draining the main radioactive pollution plume of fukushima prefecture, japan (2011–2020). Earth System Science Data, 13 , 2555–2560.
  • Evrard, O., Laceby, J. P., Lepage, H., Onda, Y., Cerdan, O., & Ayrault, S. (2015). Radiocesium transfer from hillslopes to the pacific ocean after the fukushima nuclear power plant accident: A review. Journal of environmental radioactivity, 148 , 92–110.
  • Girardin, C., & Mariotti, A. (1991). Analyse isotopique du 13c en abondance naturelle dans le carbone organique: un syst`eme automatique avec robot pr´eparateur. Cah ORSTOM Ser Pedofil, 26 , 371–380.
  • Huon, S., Hayashi, S., Laceby, J. P., Tsuji, H., Onda, Y., & Evrard, O. (2018). Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the fukushima nuclear accident. Science of the Total Environment, 612 , 1079–1090.
  • ISO 11664-4:2008 (2008). Colorimetry — Part 4: CIE 1976 L*a*b* Colour space. Standard CIE International Commission on Illumination Geneva, CH.
  • Kanonica Minolta (2022). QCM-S100w SpectraMagic NX. Kanonica Minolta. URL: https:// www.konicaminolta.com/instruments/download/software/color/smnx/index.html version 3.31.0000.
  • Kubo, K., Yanagisawa, Y., Yamamoto, T., Komazawa, M., Hiroshima, T., & Sudo, S. (2003). Fukushima 1:200.000 geological map. https://www.gsj.jp/Map/EN/geology2-2.html# Fukushima, Geographical Survey of Japan, AIST.
  • Laceby, J. P., Huon, S., Onda, Y., Vaury, V., & Evrard, O. (2016). Do forests represent a long-term source of contaminated particulate matter in the fukushima prefecture? Journal of Environmental Management, 183 , 742–753.
  • Lamb, A. L., Wilson, G. P., & Leng, M. J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using δ13c and c/n ratios in organic material. Earth-Science Reviews, 75 , 29–57.
  • NARO (2011). Fukushima comprehensive soil map of agricultural land at a scale of 1:50 000. https://soil-inventory.rad.naro.go.jp/download5.html.
  • Obara, H., Ohkura, T., Takata, Y., Kohyama, K., Maejima, Y., Hamazaki, T. et al. (2011). Comprehensive soil classification system of japan first approximation. Nogyo Kankyo Gijutsu Kenkyusho Hokoku= Bulletin of National Institute for Agro-Environmental Sciences, (pp. 1–73).
  • Onda, Y., Taniguchi, K., Yoshimura, K., Kato, H., Takahashi, J., Wakiyama, Y., Coppin, F., & Smith, H. (2020). Radionuclides from the fukushima daiichi nuclear power plant in terrestrial systems. Nature Reviews Earth & Environment, 1 , 644–660.
  • QGIS Development Team (2022). QGIS Geographic Information System. Open Source Geospatial Foundation. URL: https://www.qgis.org/fr/site/ version 3.26.0.
  • R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL: https://www.R-project.org/ version 4.1.0.
  • RStudio Team (2022). RStudio: Integrated Development Environment for R. RStudio, PBC Boston, MA. URL: http://www.rstudio.com/ version 2022.7.1.554.
  • Scheinost, A., Chavernas, A., Barr´on, V., & Torrent, J. (1998). Use and limitations of secondderivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils. Clays and Clay Minerals, 46 , 528–536.
  • Stevens, A., & Ramirez-Lopez, L. (2022). An introduction to the prospectr package. R package version 0.2.5.
  • Terashima, S., Imai, N., Taniguchi, M., Okai, T., & Nishimura, A. (2007). The Preparation and Preliminary Characterisation of Four New Geological Survey of Japan Geochemical Reference Materials: Soils, JSO-1 and JSO-2; and Marine Sediments, JMS-1 and JMS-2, . 26 , 85– 94. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1751-908X.2002.tb00626.x. doi:10.1111/j.1751-908X.2002.tb00626.x.
  • Tiecher, T., Caner, L., Minella, J. P. G., & dos Santos, D. R. (2015). Combining visible-based-color parameters and geochemical tracers to improve sediment source discrimination and apportionment. Science of the Total Environment, 527 , 135–149. 7