Published June 30, 2019 | Version v1
Journal article Restricted

Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars

Description

Kutty, Nithya N, Mitra, Adinpunya (2019): Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. Phytochemistry 162: 10-20, DOI: 10.1016/j.phytochem.2019.02.006, URL: http://dx.doi.org/10.1016/j.phytochem.2019.02.006

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFACFFD8FFCBCF35FFF3A36FEC21FFF9

References

  • Barman, M., Mitra, A., 2019. Temporal relationship between emitted and endogenous floral scent volatiles in summer- and winter- blooming Jasminum species. Physiol. Plantarum. http://doi:10.1111/ppl.12849.
  • Bera, P., Mukherjee, C., Mitra, A., 2017. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci. 256, 25-38.
  • Cui, J., Katsuno, T., Totsuka, K., Ohnishi, T., Takemoto, H., Mase, N., Toda, M., Narumi, T., Sato, K., Matsuo, T., Mizutani, K., Yang, Z., Watanabe, N., Tong, H., 2016. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J. Agric. Food Chem. 64, 1151-1157.
  • El-Moghazy, A.M., Ali, A.A., Ross, S.A., El-Shanawany, M.A., 1980. Phytochemical studies on Polianthes tuberosa L. Fitoterapia 51, 179-181.
  • Falcone Ferreyra, M.L., Rius, S.P., Casati, P., 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3, 1-15.
  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L., 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157-1161.
  • Groyne, J., Lognay, G., Marlier, M., 1999. Accumulation of glycosidically bound compounds in Fragaria × ananassa cv. Elsanta fruits at various developmental stages. Biotechnol. Agron. Soc. Environ. 3, 5-9.
  • IOFI Working Group on Methods of Analysis, 2011. Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the working group on methods of analysis of the international organization of the flavor industry (IOFI). Flavour Fragrance J. 26, 297-299.
  • Jakobsen, H., Olsen, C., 1994. Influence of climatic factors on emission of flower volatiles in situ. Planta 192, 365-371.
  • Jin, J.M., Zhang, Y.J., Yang, C.R., 2004. Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J. Nat. Prod. 67, 5-9.
  • Kolosova, N., Gorenstein, N., Kish, C.M., Dudareva, N., 2001. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13, 2333-2347.
  • Kondo, M., Oyama-Okubo, N., Ando, T., Marchesi, E., Nakayama, M., 2006. Floral scent diversity is differently expressed in emitted and endogenous components in Petunia axillaris lines. Ann. Bot. 98, 1253-1259.
  • Lim, T.K., 2014. Polianthes tuberosa. In: Edible Medicinal and Non-medicinal Plants, vol. 7. Springer, Dordrecht, pp. 126-133 Flowers.
  • Lin, L.-Z., Harnly, J.M., 2007. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J. Agric. Food Chem. 55, 1084-1096.
  • Liu, J., Osbourn, A., Ma, P., 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 8, 689-708.
  • Lubes, G., Goodarzi, M., 2017. Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chem. Rev. 117, 6399-6422.
  • Maiti, S., Mitra, A., 2017. Morphological, physiological and ultrastructural changes in flowers explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L. Plant Cell Physiol. 58, 2095-2111.
  • Maiti, S., Mitra, A., 2019. Elucidation of headspace volatilome in Polianthes tuberosa flower for identifying non-invasive biomarkers. Hortic. Environ. Biotechnol. https:// doi.org/10.1007/s13580-018-0116-x.
  • Maiti, S., Moon, U.R., Bera, P., Samanta, T., Mitra, A., 2014. The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts. Acta Physiol. Plant. 36, 2597-2605.
  • Majetic, C.J., Sinka, B.N., 2013. Diverging pathways: differential benzenoid and phenylpropanoid volatile production in Phlox subulata L. cultivars. Biochem. Syst. Ecol. 50, 75-81.
  • Masakapalli, S.K., Ritala, A., Dong, L., Van Der Krol, A.R., Oksman-Caldentey, K.M., Ratcliffe, R.G., Sweetlove, L.J., 2014. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. Phytochemistry 99, 73-85.
  • Muhlemann, J.K., Klempien, A., Dudareva, N., 2014. Floral volatiles: from biosynthesis to function. Plant Cell Environ. 37, 1936-1949.
  • Niederbacher, B., Winkler, J.B., Schnitzler, J.P., 2015. Volatile organic compounds as non-invasive markers for plant phenotyping. J. Exp. Bot. 66, 5403-5416.
  • Ohgami, S., Ono, E., Horikawa, M., Murata, J., Totsuka, K., Toyonaga, H., Ohba, Y., Dohra, H., Asai, T., Matsui, K., Mizutani, M., Watanabe, N., Ohnishi, T., 2015. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β -primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol. 168, 464-477.
  • Oyama-Okubo, N., Sakai, T., Ando, T., Nakayama, M., Soga, T., 2013. Metabolome profiling of floral scent production in Petunia axillaris. Phytochemistry 90, 37-42.
  • Picone, J.M., Clery, R.A., Watanabe, N., MacTavish, H.S., Turnbull, C.G.N., 2004. Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. "Quatre Saisons. Planta 219, 468-478.
  • Proestos, C., Boziaris, I.S., Nychas, G.J.E., Komaitis, M., 2006. Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 95, 664-671.
  • Sagae, M., Oyama-Okubo, N., Ando, T., Marchessi, E., Nakayama, M., 2008. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 72, 110-115.
  • Sircar, D., Dey, G., Mitra, 2007. A validated HPLC method for simultaneous determination of 2-hydroxy-4-methoxybenzaidehyde and 2-hydroxy-4-methoxybenzoic acid in root organs of Hemidesmus indicus. Chromatographia 65, 349-353.
  • Steinfath, M., Groth, D., Lisec, J., Selbig, J., 2008. Metabolite profile analysis: from raw data to regression and classification. Physiol. Plantarum 132, 150-161.
  • Tholl, D., Boland, W., Hansel, A., Loreto, F., Rose, U.S.R., Schnitzler, J.P., 2006. Practical approaches to plant volatile analysis. Plant J. 45, 540-560.
  • Uarrota, V.G., Moresco, R., Coelho, B., da Costa Nunes, E., Peruch, L.A.M., de Oliveira Neubert, E., Rocha, M., Maraschin, M., 2014. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration. Food Chem. 161, 67-78.
  • Van Moerkercke, A., Haring, M.A., Schuurink, R.C., 2011. The transcription factor EMISSION of BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias. Plant J. 67, 917-928.
  • Winterhalter, P., Skouroumounis, G.K., 1997. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. In: In: Berger, R.G. (Ed.), Biotechnology of Aroma Compounds: Advances in Biochemical Engineering/ Biotechnology, vol. 55. Springer, Berlin, Heidelberg, pp. 73-105.
  • Xia, J., Wishart, D.S., 2016. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinf. 55, 14 10.1-14.10.91.