Published March 6, 2024 | Version v1
Journal article Open

Meeting Report for the Phenoscape TraitFest 2023 with Comments on Organising Interdisciplinary Meetings

  • 1. Natural Science Research Laboratory, Lubbock, United States of America
  • 2. Naturhistorisk Museum, Universitetet i Oslo, Oslo, Norway|National Ecological Observatory Network, Battelle Memorial Institute, Boulder, United States of America
  • 3. University of California, Irvine, Irvine, United States of America
  • 4. Duke University, Durham, NC, United States of America
  • 5. University of New Hampshire, Durham, United States of America
  • 6. RAND Corporation, Arlington, United States of America
  • 7. Southeastern Louisiana University, Hammond, United States of America
  • 8. Finnish Museum of Natural History, Helsinki, Finland
  • 9. Princeton University, Princeton, United States of America
  • 10. Louisiana State University, Baton Rouge, United States of America
  • 11. University of California, Berkeley, Berkeley, United States of America
  • 12. University of Florida, Gainesville, United States of America
  • 13. University of Bristol, Bristol, United Kingdom
  • 14. University of California, Santa Barbara, Santa Barbara, United States of America
  • 15. National Ecological Observatory Network, Battelle, Boulder, United States of America

Description

The Phenoscape project has developed ontology-based tools and a knowledge base that enables the integration and discovery of phenotypes across species from the scientific literature. The Phenoscape TraitFest 2023 event aimed to promote innovative applications that adopt the capabilities supported by the data in the Phenoscape Knowledgebase and its corresponding semantics-enabled tools, algorithms and infrastructure. The event brought together 26 participants, including domain experts in biodiversity informatics, taxonomy and phylogenetics and software developers from various life-sciences programming toolkits and phylogenetic software projects, for an intense four-day collaborative software coding event. The event was designed as a hands-on workshop, based on the Open Space Technology methodology, in which participants self-organise into subgroups to collaboratively plan and work on their shared research interests. We describe how the workshop was organised, the projects developed and outcomes resulting from the workshop, as well as the challenges in bringing together a diverse group of participants to engage productively in a collaborative environment.

Files

BISS_article_115232.pdf

Files (609.7 kB)

Name Size Download all
md5:88208a8a433c9bde1b3ec1ef6bc00764
609.7 kB Preview Download

System files (206.8 kB)

Name Size Download all
md5:8b86cb1804f7ea3f5dcee65180265d24
206.8 kB Download

Linked records

Additional details

References

  • Balhoff J, Dahdul W, Kothari C, Lapp H, Lundberg J, Mabee P, Midford P, Westerfield M, Vision T (2010) Phenex: Ontological Annotation of Phenotypic Diversity. PLoS ONE 5 (5). https://doi.org/10.1371/journal.pone.0010500
  • Balhoff J, Mikó I, Yoder M, Mullins P, Deans A (2013) A Semantic Model for Species Description Applied to the Ensign Wasps (Hymenoptera: Evaniidae) of New Caledonia. Systematic Biology 62 (5): 639‑659. https://doi.org/10.1093/sysbio/syt028
  • Balhoff J, Dahdul WM, Dececchi T, Lapp H, Mabee PM, Vision TJ (2014) Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex. Journal of Biomedical Semantics 5 (1). https://doi.org/10.1186/2041-1480-5-45
  • Balhoff J, Phenoscape Project Team (2016) The Phenoscape Knowledgebase: tools and APIs for computing across phenotypes from evolutionary diversity and model organisms. bioRxiv https://doi.org/10.1101/071951
  • Balhoff J, Bayindir U, Caron AR, Matentzoglu N, Osumi-Sutherland D, Mungall CJ (2022) Ubergraph: integrating OBO ontologies into a unified semantic graph. 1613. ICBO-2022: International Conference on Biomedical Ontology. URL: https://icbo-conference.github.io/icbo2022/papers/ICBO-2022_paper_5005.pdf
  • Balk M, Deck J, Emery K, Walls R, Reuter D, LaFrance R, Arroyo-Cabrales J, Barrett P, Blois J, Boileau A, Brenskelle L, Cannarozzi N, Cruz JA, Dávalos L, de la Sancha N, Gyawali P, Hantak M, Hopkins S, Kohli B, King J, Koo M, Lawing AM, Machado H, McCrane S, McLean B, Morgan M, Pilaar Birch S, Reed D, Reitz E, Sewnath N, Upham N, Villaseñor A, Yohe L, Davis E, Guralnick R (2022) A solution to the challenges of interdisciplinary aggregation and use of specimen-level trait data. iScience 25 (10). https://doi.org/10.1016/j.isci.2022.105101
  • Bradski G (2000) The openCV library. Dr. Dobb's Journal: Software Tools for the Professional Programmer 25 (11): 120‑123.
  • Chang J, Rabosky D, Smith S, Alfaro M (2019) An R package and online resource for macroevolutionary studies using the ray‐finned fish tree of life. Methods in Ecology and Evolution 10 (7): 1118‑1124. https://doi.org/10.1111/2041-210x.13182
  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. 0.10.4. Release date: 2023-1-27. URL: https://igraph.org
  • Dahdul W, Balhoff J, Engeman J, Grande T, Hilton E, Kothari C, Lapp H, Lundberg J, Midford P, Vision T, Westerfield M, Mabee P (2010) Evolutionary Characters, Phenotypes and Ontologies: Curating Data from the Systematic Biology Literature. PLoS ONE 5 (5). https://doi.org/10.1371/journal.pone.0010708
  • Dahdul W, Dececchi TA, Ibrahim N, Lapp H, Mabee P (2015) Moving the mountain: analysis of the effort required to transform comparative anatomy into computable anatomy. Database 2015 https://doi.org/10.1093/database/bav040
  • Darwin Core Task Group (2009) Darwin Core. Biodiversity Information Standards (TDWG). http://www.tdwg.org/standards/450. Accessed on: 2023-9-06.
  • Dececchi TA, Balhoff J, Lapp H, Mabee P (2015) Toward Synthesizing Our Knowledge of Morphology: Using Ontologies and Machine Reasoning to Extract Presence/Absence Evolutionary Phenotypes across Studies. Systematic Biology 64 (6): 936‑952. https://doi.org/10.1093/sysbio/syv031
  • Di Martino E, Berning B, Gordon DP, Kuklinski P, Liow LH, Ramsfjell MH, Ribeiro HL, Smith AM, Taylor PD, Voje KL, Waeschenbach A, Porto A (2022) DeepBryo: a web app for AI-assisted morphometric characterization of cheilostome bryozoans. bioRxiv https://doi.org/10.1101/2022.11.17.516938
  • Edmunds R, Su B, Balhoff J, Eames BF, Dahdul W, Lapp H, Lundberg J, Vision T, Dunham R, Mabee P, Westerfield M (2015) Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes. Molecular Biology and Evolution 33 (1): 13‑24. https://doi.org/10.1093/molbev/msv223
  • Fernando P, Mabee P, Zeng E (2023) Protein–protein interaction network module changes associated with the vertebrate fin-to-limb transition. Scientific Reports 13 (1). https://doi.org/10.1038/s41598-023-50050-2
  • Gallagher R, Falster D, Maitner B, Salguero-Gómez R, Vandvik V, Pearse W, Schneider F, Kattge J, Poelen J, Madin J, Ankenbrand M, Penone C, Feng X, Adams V, Alroy J, Andrew S, Balk M, Bland L, Boyle B, Bravo-Avila C, Brennan I, Carthey AR, Catullo R, Cavazos B, Conde D, Chown S, Fadrique B, Gibb H, Halbritter A, Hammock J, Hogan JA, Holewa H, Hope M, Iversen C, Jochum M, Kearney M, Keller A, Mabee P, Manning P, McCormack L, Michaletz S, Park D, Perez T, Pineda-Munoz S, Ray C, Rossetto M, Sauquet H, Sparrow B, Spasojevic M, Telford R, Tobias J, Violle C, Walls R, Weiss KB, Westoby M, Wright I, Enquist B (2020) Publisher Correction: Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology & Evolution 4 (4): 662‑662. https://doi.org/10.1038/s41559-020-1167-9
  • Girón JC, Tarasov S, González Montaña LA, Matentzoglu N, Smith AD, Koch M, Boudinot BE, Bouchard P, Burks R, Vogt L, Yoder M, Osumi-Sutherland D, Friedrich F, Beutel R, Mikó I (2023) Formalizing Invertebrate Morphological Data: A Descriptive Model for Cuticle-Based Skeleto-Muscular Systems, an Ontology for Insect Anatomy, and their Potential Applications in Biodiversity Research and Informatics. Systematic Biology https://doi.org/10.1093/sysbio/syad025
  • Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning 53 (3): 245‑269. https://doi.org/10.1007/s10817-014-9305-1
  • Haendel MA, Balhoff JP, Bastian FB, Blackburn DC, Blake JA, Bradford Y, Comte A, Dahdul WM, Dececchi TA, Druzinsky RE, Hayamizu TF, Ibrahim N, Lewis SE, Mabee PM, Niknejad A, Robinson-Rechavi M, Sereno PC, Mungall CJ (2014) Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon. Journal of Biomedical Semantics 5 (1). https://doi.org/10.1186/2041-1480-5-21
  • Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics 28 (1). https://doi.org/10.2307/2346830
  • Jackson R, Balhoff J, Douglass E, Harris N, Mungall C, Overton J (2019) ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinformatics 20 (1). https://doi.org/10.1186/s12859-019-3002-3
  • Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32 (3): 241‑254. https://doi.org/10.1007/bf02289588
  • Kazakov Y, Krötzsch M, Simančík F (2013) The Incredible ELK. Journal of Automated Reasoning 53 (1): 1‑61. https://doi.org/10.1007/s10817-013-9296-3
  • Koh I, Lonsdorf E, Williams N, Brittain C, Isaacs R, Gibbs J, Ricketts T (2015) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences 113 (1): 140‑145. https://doi.org/10.1073/pnas.1517685113
  • Lapp H, Xu H, Bradley J (2022) rphenoscape: Semantically Rich Phenotypic Traits from the Phenoscape Knowledgebase. URL: http://rphenoscape.phenoscape.org
  • Lord PW, Stevens RD, Brass A, Goble CA (2003) Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19 (10): 1275‑1283. https://doi.org/10.1093/bioinformatics/btg153
  • Mabee P, Balhoff JP, Dahdul WM, Lapp H, Midford PE, Vision TJ, Westerfield M (2012) 500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton. Journal of Applied Ichthyology 28 (3): 300‑305. https://doi.org/10.1111/j.1439-0426.2012.01985.x
  • Mabee PM, Dahdul WM, Balhoff JP, Lapp H, Manda P, Uyeda J, Vision TJ, Westerfield M (2018) Phenoscape: semantic analysis of organismal traits and genes yields insights in evolutionary biology. In: Thessen A (Ed.) Application of semantic technology in biodiversity science. IOS Press, Berlin, 207-224 pp. https://doi.org/10.3233/978-1-61499-854-9-207
  • Manda P, Balhoff J, Lapp H, Mabee P, Vision T (2015) Using the phenoscape knowledge base to relate genetic perturbations to phenotypic evolution. genesis 53 (8): 561‑571. https://doi.org/10.1002/dvg.22878
  • Marshall CR, Finnegan S, Clites EC, Holroyd PA, Bonuso N, Cortez C, Davis E, Dietl GP, Druckenmiller PS, Eng RC, Garcia C, Estes-Smargiassi K, Hendy A, Hollis KA, Little H, Nesbitt EA, Roopnarine P, Skibinski L, Vendetti J, White LD (2018) Quantifying the dark data in museum fossil collections as palaeontology undergoes a second digital revolution. Biology Letters 14 (9). https://doi.org/10.1098/rsbl.2018.0431
  • Matentzoglu N, Goutte-Gattat D, Tan SZK, Balhoff JP, Carbon S, Caron AR, Duncan WD, Flack JE, Haendel M, Harris NL, Hogan WR, Hoyt CT, Jackson RC, Kim H, Kir H, Larralde M, McMurry JA, Overton JA, Peters B, Pilgrim C, Stefancsik R, Robb SM, Toro S, Vasilevsky NA, Walls R, Mungall CJ, Osumi-Sutherland D (2022) Ontology Development Kit: a toolkit for building, maintaining and standardizing biomedical ontologies. Database 2022 https://doi.org/10.1093/database/baac087
  • Menz MM, Phillips R, Winfree R, Kremen C, Aizen M, Johnson S, Dixon K (2011) Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends in Plant Science 16 (1): 4‑12. https://doi.org/10.1016/j.tplants.2010.09.006
  • Mikó I, Masner L, Ulmer J, Raymond M, Hobbie J, Tarasov S, Margaría CB, Seltmann K, Talamas E (2021) A semantically enriched taxonomic revision of Gryonoides Dodd, 1920 (Hymenoptera, Scelionidae), with a review of the hosts of Teleasinae. Journal of Hymenoptera Research 87: 523‑573. https://doi.org/10.3897/jhr.87.72931
  • Mirande JM (2018) Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics 35 (3): 282‑300. https://doi.org/10.1111/cla.12345
  • Mungall C, Gkoutos G, Washington N, Lewis S (2007) Representing Phenotypes in OWL. In: Golbreich C, Kalyanpur A, Parsia B (Eds) OWL: Experiences and Directions. Innsbruck, Austria. URL: https://ceur-ws.org/Vol-258/paper29.pdf
  • Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA (2012) Uberon, an integrative multi-species anatomy ontology. Genome Biology 13 (1). https://doi.org/10.1186/gb-2012-13-1-r5
  • Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW (2019) Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols 14 (7): 2152‑2176. https://doi.org/10.1038/s41596-019-0176-0
  • Owen H (2008) Open space technology: A user's guide. Berrett-Koehler Publishers, 192 pp.
  • Pesquita C, Faria D, Falcão A, Lord P, Couto F (2009) Semantic Similarity in Biomedical Ontologies. PLoS Computational Biology 5 (7). https://doi.org/10.1371/journal.pcbi.1000443
  • Porto A, Voje K (2020) ML‐morph: A fast, accurate and general approach for automated detection and landmarking of biological structures in images. Methods in Ecology and Evolution 11 (4): 500‑512. https://doi.org/10.1111/2041-210x.13373
  • Porto D, Tarasov S, Charpentier C, Lapp H, Balhoff J, Vision T, Dahdul W, Mabee P, Uyeda J (2023) rphenoscate: An R package for semantic-aware evolutionary analyses of anatomical traits. Methods in Ecology and Evolution 00: 1‑10. https://doi.org/10.1111/2041-210X.14210
  • Porto DS, Dahdul WM, Lapp H, Balhoff JP, Vision TJ, Mabee PM, Uyeda J (2022) Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies. Systematic Biology 71 (6): 1290‑1306. https://doi.org/10.1093/sysbio/syac022
  • Resnik P (1995) Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1. URL: http://dl.acm.org/citation.cfm?id=1625855.1625914 [ISBN 978-1-55860-363-9].
  • Resnik P (1999) Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. J. Artif. Intell. Res. 11 (95). URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3785
  • Revell L (2011) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3 (2): 217‑223. https://doi.org/10.1111/j.2041-210x.2011.00169.x
  • Seltmann K, Allen J, Brown B, Carper A, Engel M, Franz N, Gilbert E, Grinter C, Gonzalez V, Horsley P, Lee S, Maier C, Miko I, Morris P, Oboyski P, Pierce N, Poelen J, Scott V, Smith M, Talamas E, Tsutsui N, Tucker E (2021) Announcing Big-Bee: An initiative to promote understanding of bees through image and trait digitization. Biodiversity Information Science and Standards 5 https://doi.org/10.3897/biss.5.74037
  • Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone S, Scheuermann RH, Shah N, Whetzel PL, Lewis S (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25 (11): 1251‑1255. https://doi.org/10.1038/nbt1346
  • Stefancsik R, Balhoff J, Balk M, Ball R, Bello S, Caron A, Chesler E, de Souza V, Gehrke S, Haendel M, Harris L, Harris N, Ibrahim A, Koehler S, Matentzoglu N, McMurry J, Mungall C, Munoz-Torres M, Putman T, Robinson P, Smedley D, Sollis E, Thessen A, Vasilevsky N, Walton D, Osumi-Sutherland D (2023) The Ontology of Biological Attributes (OBA)—computational traits for the life sciences. Mammalian Genome 34 (3): 364‑378. https://doi.org/10.1007/s00335-023-09992-1
  • Tarasov S, Mikó I, Yoder MJ, Uyeda JC (2019) PARAMO: A Pipeline for Reconstructing Ancestral Anatomies Using Ontologies and Stochastic Mapping. Insect Systematics and Diversity 3 (6). https://doi.org/10.1093/isd/ixz009
  • Thessen A, Walls R, Vogt L, Singer J, Warren R, Buttigieg PL, Balhoff J, Mungall C, McGuinness D, Stucky B, Yoder M, Haendel M (2020) Transforming the study of organisms: Phenomic data models and knowledge bases. PLOS Computational Biology 16 (11). https://doi.org/10.1371/journal.pcbi.1008376
  • Thewlis J, Albanie S, Bilen H, Vedaldi A (2019) Unsupervised learning of landmarks by descriptor vector exchange. Proceedings of the IEEE/CVF International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2019.00646
  • Van Belleghem S, Papa R, Ortiz‐Zuazaga H, Hendrickx F, Jiggins C, Owen McMillan W, Counterman B (2017) patternize: An R package for quantifying colour pattern variation. Methods in Ecology and Evolution 9 (2): 390‑398. https://doi.org/10.1111/2041-210x.12853
  • Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116 (5): 882‑892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
  • Vogt L (2019) Organizing phenotypic data—a semantic data model for anatomy. Journal of Biomedical Semantics 10 (1). https://doi.org/10.1186/s13326-019-0204-6
  • Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An Evolving Community-Developed Biodiversity Data Standard. PLoS ONE 7 (1). https://doi.org/10.1371/journal.pone.0029715
  • Wilkinson M, Dumontier M, Aalbersberg I, et al. (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3: 160018. https://doi.org/10.1038/sdata.2016.18
  • Yoder M, Mikó I, Seltmann K, Bertone M, Deans A (2010) A Gross Anatomy Ontology for Hymenoptera. PLoS ONE 5 (12). https://doi.org/10.1371/journal.pone.0015991