Published June 27, 2007 | Version 10956
Journal article Open

A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model

Description

A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.

Files

10956.pdf

Files (642.7 kB)

Name Size Download all
md5:eb05c4a13086393b8b28f5331f0f9cb7
642.7 kB Preview Download

Additional details

References

  • A. J. Moss, Indirect Method of Blood Pressure Measurement; Symposium on Hypertension in childhood and adolescence. 3-14. 1975.
  • Jae Kyu. Cheun, Cardiopulmonary Physiology for the Clinicians, Koon Ja Publishing Inc, pp. 57-68, 1996.
  • E. J. Marey, Pression et vitesse du sang, Physiologic Experimentable. Masson, Paris, Vol. 2, ch. VII, pp. 307-343, 1876.
  • J. A. Posey, L. A., H. Williams and A. G. Moore, "The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure: Part I," Cardiovasc. Res. Center Bull., Vol 8, pp. 15-25, 1969.
  • Wang, M. Development of K-sound and oscillometric pulse generating system for NIBP monitor tester, M. Sc. thesis, Department of Mechanical Engineering, Queen's University, Kingston, Ontario, Canada. 1990.
  • G. Drzewiecki, R. Hood, and H. Apple, "Theory of the oscilometric maximum and the systolic and diastolic detection ratios," Ann. Biomed. Eng., vol. 22, pp. 88-96, 1994.
  • L. A. Geddes, M. Voelz, C. combs, D. Reiner, and C. F. Babbs, Characterization of the Oscillometric Method for Measuring Indirect Blood Pressure, Ann. Biomed. Eng., vol. 10, pp. 271-280, 1982.
  • S. H. Liu, A Model-based Fuzzy Logic Controller for Tracking Mean Arterial Pressure, IEEE International Fuzzy Systems Conference, pp. 1495-1497, 2001.
  • C. T. Lin, S. H. Liu, J. J. Wang, Z. C. Wen, "Reduction of Interference in Oscillometric Arterial Blood Pressure Measurement Using Fuzzy Logic," IEEE Transactions on Biomedical Engineering, vol 50, no. 4, 2003. [10] F. K. Forster and D. Turney. "Oscillometric determination of diastolic, mean, and systolic blood pressure. A numerical model," ASME J. Biomech. Eng., vol. 108, pp 359-364, 1986. [11] H. H. Hardy and R. E. Collins, "On the pressure-volume relationship in circulatory elements," Med. Biol. Eng. Comput., vol. 20, pp. 565-570, 1982. [12] S. Sun, "New approaches to the noninvasive determination of arterial blood pressure and compliance profile," Ph. D. dissertation, University of Utah, Salt Lake city, USA, 1989.