Published March 2, 2024 | Version V.02
Dataset Open

Size normalizing planktonic Foraminifera abundance in the water column

  • 1. Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
  • 2. MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
  • 3. NIOZ, Royal Netherlands Institute for Sea Research, Department of Ocean Systems, Texel, The Netherlands
  • 4. Universitat Autònoma de Barcelona, ICTA and Dept. of Geography, Spain
  • 5. Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • 6. Fondation pour la recherche sur la biodiversité (FRB-CESAB), Montpellier, France
  • 7. Tohoku University Museum, Tohoku University, Japan
  • 8. LPG-BIAF, UMR-CNRS 6112, University of Angers, France
  • 9. Université Littoral Côte d'Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, France
  • 10. Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany

Description

Data and R code for the paper Size normalizing planktonic Foraminifera abundance in the water column (https://doi.org/10.1002/lom3.10637) by Sonia Chaabane, Thibault de Garidel-Thoron, Xavier Giraud, Julie Meilland, Geert-Jan A. Brummer, Lukas Jonkers, P. Graham Mortyn, Mattia Greco, Nicolas Casajus, Olivier Sulpis, Michal Kucera, Azumi Kuroyanagi, Hélène Howa, Gregory Beaugrand, Ralf Schiebel

 

The codes serve to generate a new normalization approach for estimating the abundance of planktonic Foraminifera (ind/m³) within the specified collection size fraction range. Data utilized in this study are sourced from the FORCIS database, containing records collected from the global ocean at various depths spanning the past century. A cumulative distribution across size fractions is identified and modeled using a Michaelis-Menten function. This modeling results in multiplication factors enabling the normalization of one fraction to any other size fraction equal to or larger than 100 µm. The resultant size normalization model is then tested across various depths and compared against a previous size normalization solution.

Scripts written by Sonia Chaabane.

DATA SOURCES

DATA

  1. data_raw_from_excel.RDS

CODES

  1. Code 1_Prepare the data.R: Reads the data and prepares it for analysis.
  2. Code 2_Data-model_training.R: Analyzes the data and builds the model.
  3. Code 2_MM_confidence interval_all oceans_depths_seasons.R: Analyzes the data and computes confidence intervals across all oceans, depths, and seasons.
  4. Code 3_Validation.R: Compares actual vs. estimated number concentrations.
  5. Code 4_Test with berger scheme.R: Compares actual vs. estimated number concentrations using Berger 1969 correction scheme.
  6. Code 5_Cross validation_Retailleau et al.R: Applies the FORCIS number concentration-size correction scheme on an independent dataset.
  7. Code 6_Retailleau et al. using berger approach.R: Compares actual vs. estimated number concentrations using Berger 1969 correction scheme from an independent dataset.
  8. function.R: Additional functions used in the analysis.

 

Files

Files (11.4 MB)

Name Size Download all
md5:0da63f9670f5ca0a612697d8799069c5
3.4 kB Download
md5:ed613e15b1ffb26c6f3ee0b2adf224eb
20.4 kB Download
md5:641a048bc11db099c5aa0351ddd89d5a
8.4 kB Download
md5:ee7bc622167fef1835908a63c7d9b4be
40.7 kB Download
md5:274a26cf28e75eb2a7efa55a6e20d4e5
28.4 kB Download
md5:27751221fffec12ec95e498e471fb7ad
14.0 kB Download
md5:060db3ac1b18a3d57c2a5647502e4404
18.7 kB Download
md5:df61766843b1592bbb477b81b7a5fd9b
11.3 MB Download
md5:41bd1a0e3362358f0f5c7ec61bcb324d
6.6 kB Download

Additional details

Dates

Updated
2024-03-02