Published February 29, 2024 | Version v1
Dataset Open

Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP1-RCP2.6)

Description

As global emissions and temperatures continue to rise, global climate models offer projections as to how the climate will change in years to come. These model projections can be used for a variety of end-uses to better understand how current systems will be affected by the changing climate. While climate models predict every individual year, using a single year may not be representative as there may be outlier years. It can also be useful to represent a multi-year period with a single year of data. Both items are currently addressed when working with past weather data by a using Typical Meteorological Year (TMY)methodology. This methodology works by statistically selecting representative months from a number of years and appending these months to achieve a single representative year for a given period. In this analysis, the TMY methodology is used to develop Future Typical Meteorological Year (fTMY) using climate model projections. The resulting set of fTMY data is then formatted into EnergyPlus weather (epw) fi les that can be used for building simulation to estimate the impact of climate scenarios on the built environment.

This dataset contains the individual-climate-model version fTMY files for 3281 US Counties in the continental United States. The data for each county is derived from six different global climate models (GCMs) from the 6th Phase of Coupled Models Intercomparison Project CMIP6-ACCESSCM2, BCC-CSM2-MR, CNRM-ESM2-1, MPI-ESM1-2-HR, MRI-ESM2-0, NorESM2-MM. The six climate models were statistically downscaled for 1980–2014 in the historical period and 2015–2100 in the future period under the SSP585 scenario using the methodology described in Rastogi et al. (2022). Additionally, hourly data was derived from the daily downscaled output using the Mountain Microclimate Simulation Model (MTCLIM; Thornton and Running, 1999). The shared socioeconomic pathway (SSP) used for this analysis was SSP 1 and the representative concentration pathway (RCP) used was RCP 2.6. More information about SSP and RCP can be referred to O'Neill et al. (2020).

Please be aware that in cases where a location contains multiple .EPW files, it indicates that there are multiple weather data collection points within that location.

More information about the six selected CMIP6 GCMs:

ACCESS-CM2 -
http://dx.doi.org/10.1071/ES19040
BCC-CSM2-MR -
https://doi.org/10.5194/gmd-14-2977-2021
CNRM-ESM2-1-
https://doi.org/10.1029/2019MS001791
MPI-ESM1-2-HR -
https://doi.org/10.5194/gmd-12-3241-2019
MRI-ESM2-0 -
https://doi.org/10.2151/jmsj.2019-051
NorESM2-MM -
https://doi.org/10.5194/gmd-13-6165-2020

Additional references:
O'Neill, B. C., Carter, T. R., Ebi, K. et al. (2020). Achievements and Needs for the Climate Change Scenario Framework.
Nat. Clim. Chang. 10, 1074–1084 (2020). https://doi.org/10.1038/s41558-020-00952-0
Rastogi, D., Kao, S.-C., and Ashfaq, M. (2022). How May the Choice of Downscaling Techniques and Meteorological Reference Observations Affect Future Hydroclimate Projections? Earth's Future, 10, e2022EF002734. https://doi.org/10.1029/2022EF002734Thornton, P. E. and Running, S. W. (1999). An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity and Precipitation, Agricultural and Forest Meteorology, 93, 211-228.

Please cite the following if this data is used in any research or project:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New (2023). “Multi-Model Future Typical Meteorological (fTMY) Weather Files for nearly every US County.” The 3rd ACM International Workshop on Big Data and Machine Learning for Smart Buildings and Cities and BuildSys '23: The 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Istanbul, Turkey, November 15-16, 2023. DOI: 10.1145/3600100.3626637

 

Cross-Model Version:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10719204, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10719178, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10698921, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (Cross-Model version-SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10420668, Dec 2023. [Data

 

Model-specific Version:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729277, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729279, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729223, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729201, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729157, Feb 2024. [Data]   

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729199, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (East and South – SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.8335814, Sept 2023. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (West and Midwest – SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.8338548, Sept 2023. [Data

 

Representative Cities Version:

Bass, Brett, New, Joshua R., Rastogi, Deeksha and Kao, Shih-Chieh (2022). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation (1.0) [Data set]." Zenodo, doi.org/10.5281/zenodo.6939750, Aug. 2022. [Data]

Files

AL.zip

Files (24.8 GB)

Name Size Download all
md5:334a6214b50625d74559ba72aecc6ca2
1.3 GB Preview Download
md5:89445b092da8fb22ecdb06f85da78d56
1.4 GB Preview Download
md5:0199496bd93d2033124dfdc7deb0aff9
151.2 MB Preview Download
md5:b05e928b7c39411851f6920e6e90bcb7
18.9 MB Preview Download
md5:9c5b1837bcedce3df5eb31c5f1cbd16b
55.9 MB Preview Download
md5:71a710786ec105a8efd112ce0657b27a
1.3 GB Preview Download
md5:dcfd8de7af6b09a7ae715d8f0ffb6777
3.0 GB Preview Download
md5:4eea84fdc7e164f2a0e3ab5a5892d866
2.3 GB Preview Download
md5:9a9be15cc277621dd747488eb7dd2720
1.2 GB Preview Download
md5:38da981ece5d2edf76c061b49e79e2d8
251.2 MB Preview Download
md5:fe2ed0e8db5f4d8fcbe530e1f1763732
449.9 MB Preview Download
md5:34ae189610fd4b35cdacfd9af03265e3
431.8 MB Preview Download
md5:2234c8491d316306da48e65b4a8092ae
1.5 GB Preview Download
md5:0aa4de7d646c89eff65e268f8f7d06e3
1.9 GB Preview Download
md5:5bd37880f2417e9cf07dc749cc215b0d
188.8 MB Preview Download
md5:449a6ed9bf8e889af013d1ece4c73def
394.4 MB Preview Download
md5:d120a49c6068c1849f55714f7096c92e
1.2 GB Preview Download
md5:ef8ee902fad85fe45d796536fc18d284
1.3 GB Preview Download
md5:03ee09ce0db112e895468919d6df1b31
94.0 MB Preview Download
md5:8ef06b34d3712b4806168d68bef63500
861.9 MB Preview Download
md5:bd941654b42150da75459cb1327cd337
1.8 GB Preview Download
md5:8e3670b660bce53e42bd24c533e4359c
2.5 GB Preview Download
md5:af3edcdc46b5be3dde24579d67cd3ed6
265.3 MB Preview Download
md5:ca1a64a70c988eb017c2cbcc1dbcb189
1.0 GB Preview Download