Published February 29, 2024 | Version v1
Dataset Open

Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP3-RCP7.0)

Description

As global emissions and temperatures continue to rise, global climate models offer projections as to how the climate will change in years to come. These model projections can be used for a variety of end-uses to better understand how current systems will be affected by the changing climate. While climate models predict every individual year, using a single year may not be representative as there may be outlier years. It can also be useful to represent a multi-year period with a single year of data. Both items are currently addressed when working with past weather data by a using Typical Meteorological Year (TMY)methodology. This methodology works by statistically selecting representative months from a number of years and appending these months to achieve a single representative year for a given period. In this analysis, the TMY methodology is used to develop Future Typical Meteorological Year (fTMY) using climate model projections. The resulting set of fTMY data is then formatted into EnergyPlus weather (epw) fi les that can be used for building simulation to estimate the impact of climate scenarios on the built environment.

This dataset contains the individual-climate-model version fTMY files for 3281 US Counties in the continental United States. The data for each county is derived from six different global climate models (GCMs) from the 6th Phase of Coupled Models Intercomparison Project CMIP6-ACCESSCM2, BCC-CSM2-MR, CNRM-ESM2-1, MPI-ESM1-2-HR, MRI-ESM2-0, NorESM2-MM. The six climate models were statistically downscaled for 1980–2014 in the historical period and 2015–2100 in the future period under the SSP585 scenario using the methodology described in Rastogi et al. (2022). Additionally, hourly data was derived from the daily downscaled output using the Mountain Microclimate Simulation Model (MTCLIM; Thornton and Running, 1999). The shared socioeconomic pathway (SSP) used for this analysis was SSP 3 and the representative concentration pathway (RCP) used was RCP 7.0. More information about SSP and RCP can be referred to O'Neill et al. (2020).

Please be aware that in cases where a location contains multiple .EPW files, it indicates that there are multiple weather data collection points within that location.

More information about the six selected CMIP6 GCMs:

ACCESS-CM2 -
http://dx.doi.org/10.1071/ES19040
BCC-CSM2-MR -
https://doi.org/10.5194/gmd-14-2977-2021
CNRM-ESM2-1-
https://doi.org/10.1029/2019MS001791
MPI-ESM1-2-HR -
https://doi.org/10.5194/gmd-12-3241-2019
MRI-ESM2-0 -
https://doi.org/10.2151/jmsj.2019-051
NorESM2-MM -
https://doi.org/10.5194/gmd-13-6165-2020

Additional references:
O'Neill, B. C., Carter, T. R., Ebi, K. et al. (2020). Achievements and Needs for the Climate Change Scenario Framework.
Nat. Clim. Chang. 10, 1074–1084 (2020). https://doi.org/10.1038/s41558-020-00952-0
Rastogi, D., Kao, S.-C., and Ashfaq, M. (2022). How May the Choice of Downscaling Techniques and Meteorological Reference Observations Affect Future Hydroclimate Projections? Earth's Future, 10, e2022EF002734. https://doi.org/10.1029/2022EF002734Thornton, P. E. and Running, S. W. (1999). An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity and Precipitation, Agricultural and Forest Meteorology, 93, 211-228.

Please cite the following if this data is used in any research or project:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New (2023). “Multi-Model Future Typical Meteorological (fTMY) Weather Files for nearly every US County.” The 3rd ACM International Workshop on Big Data and Machine Learning for Smart Buildings and Cities and BuildSys '23: The 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Istanbul, Turkey, November 15-16, 2023. DOI: 10.1145/3600100.3626637

 

Cross-Model Version:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10719204, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10719178, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). " Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10698921, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (Cross-Model version-SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10420668, Dec 2023. [Data

 

Model-specific Version:

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729277, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP1-RCP2.6)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729279, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729223, Feb 2024. [Data

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP2-RCP4.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729201, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (West and Midwest - SP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729157, Feb 2024. [Data]   

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2024). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (East and South - SSP3-RCP7.0)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.10729199, Feb 2024. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (East and South – SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.8335814, Sept 2023. [Data]

Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (West and Midwest – SSP5-RCP8.5)." ORNL internal Scientific and Technical Information (STI) report, doi: 10.5281/zenodo.8338548, Sept 2023. [Data

 

Representative Cities Version:

Bass, Brett, New, Joshua R., Rastogi, Deeksha and Kao, Shih-Chieh (2022). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation (1.0) [Data set]." Zenodo, doi.org/10.5281/zenodo.6939750, Aug. 2022. [Data]

Files

AL.zip

Files (24.8 GB)

Name Size Download all
md5:eac7962fb7aeed6f49e1a1dd3a73100a
1.3 GB Preview Download
md5:02d735e1831ba391a05780dff4976086
1.4 GB Preview Download
md5:a0137862b6a4e6a1a606a04227e63153
151.2 MB Preview Download
md5:dc4f7bf971b1bcbe3d8f245b0808e739
18.8 MB Preview Download
md5:c6bd4e0b142b88e10db55e62d526c79f
55.8 MB Preview Download
md5:7ba5771bc88b44a9e7841d152847e2d6
1.3 GB Preview Download
md5:1b56b078d1570ad86fcf1297078d6284
3.0 GB Preview Download
md5:847c0f610e7eefee403dc425b3a1c1e9
2.3 GB Preview Download
md5:d6838f71cfa95fe76df0cfeae13ef578
1.2 GB Preview Download
md5:6fef8d2350c93e26a57b9043ed24d85f
251.1 MB Preview Download
md5:4d8db4e2b87d3bcef3699475aaa482d0
449.5 MB Preview Download
md5:22b8b974c2af3e28528dda87c61ce327
431.7 MB Preview Download
md5:4fe00c0f6a39f1423c5941517096abaf
1.5 GB Preview Download
md5:7729dfbb666c3cca23106441e4d3c10c
1.9 GB Preview Download
md5:3ab8395724f4c8f16f960969658c30de
188.8 MB Preview Download
md5:abb2fe97325cac40b7e31affc952995e
394.2 MB Preview Download
md5:4a297f4bce1e2aada7a795255d6dfa8f
1.2 GB Preview Download
md5:4807b88228381c79c47786e0364112a3
1.3 GB Preview Download
md5:1b8c4d1573ae0320b713ecaba4b1107d
94.0 MB Preview Download
md5:cdb98e467515b406b2a6cd4cecc3b15a
861.5 MB Preview Download
md5:8cd2dad9992bd322eaace319752e3c1c
1.8 GB Preview Download
md5:21708569107c579495db7c961a9dce9d
2.5 GB Preview Download
md5:b5a0b8bea8f0b1bbfcb4c55eccce04fb
265.2 MB Preview Download
md5:ab138d489d860fefa8e89727b4c7b2a4
1.0 GB Preview Download