INSPIRED: Inelastic Neutron Scattering Prediction for Instantaneous Results and Experimental Design
Creators
Description
INSPIRED is a graphic user interface (GUI) that performs rapid prediction and calculation of phonons and inelastic neutron scattering (INS) spectra. It consists of three modules. The "Predictor" module uses a symmetry-aware neural network (coupled with an autoencoder) [1-3] to perform direct prediction of total/partial phonon density of states and powder 1D/2D INS spectra from a given structure. The "DFT database" module uses pre-calculated force constants from density functional theory (DFT) [4] to perform INS simulations for single crystals and powders (for the crystals available in the database). The "MLFF" module uses pre-trained universal force fields [8-12] to perform structural optimization, phonon calculation, and INS simulations for single crystals and powders for any given crystal. The predicted/calculated results are saved in CSV files and can be visualized with the GUI. INSPIRED is developed to be a convenient tool for INS experimental planning, steering, and quick data analysis.
This repository contains three files:
1. A tarball file (dftdb.tar.gz) containing the DFT database (currently with 11979 crystals)
2. A tarball file (model.tar.gz) containing the ML models
3. A VirtualBox appliance file (inspired_vm.ova) to run INSPIRED as a virtual machine.
Instructions on how to use these files, as well as the rest part of the software, can be found on the GitHub page.
Files
Files
(8.0 GB)
Name | Size | Download all |
---|---|---|
md5:f8c4fd36938731f819bccf70307b7f07
|
463.2 MB | Download |
md5:1a47f2af4387aa22076e2ab24128d085
|
6.7 GB | Download |
md5:fe636452058f826ff0d70216ddae481d
|
888.0 MB | Download |
Additional details
Related works
- Is derived from
- Dataset: 10.5281/zenodo.7438040 (DOI)
Funding
- United States Department of Energy
Software
- Repository URL
- https://github.com/cyqjh/inspired
- Programming language
- Python
References
- 1. Cheng, Y.; Wu, G.; Pajerowski, D. M.; Stone, M. B.; Savici, A. T.; Li, M.; Ramirez-Cuesta, A. J., Direct prediction of inelastic neutron scattering spectra from the crystal structure. Machine Learning: Science and Technology 2023, 4 (1), 015010.
- 2. Cheng, Y.; Stone, M. B.; Ramirez-Cuesta, A. J., A database of synthetic inelastic neutron scattering spectra from molecules and crystals. Scientific Data 2023, 10 (1), 54.
- 3. Chen, Z.; Andrejevic, N.; Smidt, T.; Ding, Z.; Xu, Q.; Chi, Y.-T.; Nguyen, Q. T.; Alatas, A.; Kong, J.; Li, M., Direct Prediction of Phonon Density of States With Euclidean Neural Networks. Advanced Science 2021, 8 (12), 2004214.
- 4. Togo, A. http://phonondb.mtl.kyoto-u.ac.jp/. (accessed 08/30/2022).
- 5. Togo, A.; Tanaka, I., First principles phonon calculations in materials science. Scripta Materialia 2015, 108, 1-5.
- 6. Cheng, Y.; Daemen, L.; Kolesnikov, A.; Ramirez-Cuesta, A., Simulation of inelastic neutron scattering spectra using OCLIMAX. Journal of chemical theory and computation 2019, 15 (3), 1974-1982.
- 7. Hjorth Larsen, A.; Jørgen Mortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Bjerre Jensen, P.; Kermode, J.; Kitchin, J. R.; Leonhard Kolsbjerg, E.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Bergmann Maronsson, J.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.; Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W., The atomic simulation environment—a Python library for working with atoms. Journal of Physics: Condensed Matter 2017, 29 (27), 273002.
- 8. Batatia, I.; Kovacs, D. P.; Simm, G.; Ortner, C.; Csányi, G., MACE: Higher order equivariant message passing neural networks for fast and accurate force fields. Advances in Neural Information Processing Systems 2022, 35, 11423-11436.
- 9. Batatia, I.; Batzner, S.; Kovács, D. P.; Musaelian, A.; Simm, G. N.; Drautz, R.; Ortner, C.; Kozinsky, B.; Csányi, G., The design space of E (3)-equivariant atom-centered interatomic potentials. arXiv preprint arXiv:2205.06643 2022.
- 10. Batatia, I.; Benner, P.; Chiang, Y.; Elena, A. M.; Kovács, D. P.; Riebesell, J.; Advincula, X. R.; Asta, M.; Baldwin, W. J.; Bernstein, N., A foundation model for atomistic materials chemistry. arXiv preprint arXiv:2401.00096 2023.
- 11. Deng, B.; Zhong, P.; Jun, K.; Riebesell, J.; Han, K.; Bartel, C. J.; Ceder, G., CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nature Machine Intelligence 2023, 5 (9), 1031-1041.
- 12. Chen, C.; Ong, S. P., A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science 2022, 2 (11), 718-728.