Published July 3, 2023 | Version v1
Journal article Open

Count and location determination of Nile Tilapia (Oreochromis niloticus) using convolutional neural network and CLAHE

  • 1. Bicol University Polangui, Polangui, Albay, Philippines

Contributors

  • 1. Isabela State University, Cauayan City, Isabela, Philippines
  • 2. Technoligcal Institute of The Philippines, Quezon City, Philippines

Description

Fish counting in aquaculture is an important task in fish population estimation. However, it is very challenging because of the diversity of backgrounds, uncertainty of fish motion, and obstruction between objects. To solve this problem, a model using Convolutional Neural Network (CNN) and Contrast Limited Adaptive Histogram Equalization (CLAHE) is proposed to provide an advanced and efficient counting method for aquaculture. The methodology involved image acquisition, CNN implementation, and evaluation. First, images were manually annotated from video frames. Then, a CNN was trained on the training dataset to detect the tilapia and determine its location. Lastly, the performance of the method was evaluated and compared with other assessment methods. The results show that the study gained 95%, 87%, and 91% for precision, recall, and F1-score, respectively. Further, the mean average precision at 0.5 resulted in 94.21%; thus, the study can detect and locate the fish in a tank and be integrated into a feeding management system.

published by the  Journal of Biodiversity and Environmental Sciences (JBES)

Files

JBES-V23-No1-p1-6.pdf

Files (2.1 MB)

Name Size Download all
md5:e2b1a7e5cf7271a0b27be38e789ec05d
2.1 MB Preview Download

Additional details

Dates

Available
2023-07-03
article published

References

  • Bureau of Fisheries and Aquatic Resources. 2022. The Philippine Tilapia Industry Roadmap (2022-2025).
  • Conrady CR, Er Ş, Attwood CG, Roberson LA, de Vos L. 2022. Automated detection and classification of southern African Roman seabream using mask R-CNN. Ecological Informatics 69, 101593.
  • Jose JA, Kumar CS, Sureshkumar S. 2022. Tuna classification using super learner ensemble of region-based CNN-grouped 2D-LBP models. Information Processing in Agriculture 9(1), 68–79.
  • Li D, Miao Z, Peng F, Wang L, Hao Y, Wang Z, Chen T, Li H, Zheng Y. 2020. Automatic counting methods in aquaculture: A review.
  • Lumauag R, Nava M. 2019. Fish tracking and counting using image processing. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018, 1-4. https://doi.org /10.1109/HNICEM.2018.8666369
  • Mandal R, Connolly RM, Schlacher TA, Stantic B. 2018. Assessing fish abundance from underwater video using deep neural networks. In Proceedings of the International Joint Conference on Neural Networks (Vols. 2018-July). https://doi.org/10.1109 /IJCNN.2018.8489482
  • Mishra A, Gupta M, Sharma P. 2018. Enhancement of Underwater Images using Improved CLAHE. 2018 International Conference on Advanced Computation and Telecommunication, ICACAT 5, 1-6. https://doi.org/10.1109/ICACAT.2018.8933665
  • Muksit AAl, Hasan F, Hasan Bhuiyan Emon MF, Haque MR, Anwary AR, Shatabda S. 2022. YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment. Ecological Informatics 72, 101847. https://doi.org/10.1016 /J.ECOINF.2022.101847
  • PCAARRD. 2023. (n.d.). Tilapia – Industry Strategic Science and Technology Plans (ISPs) Platform. Retrieved June 24, 2023, from https://ispweb. pcaarrd. dost.gov.ph/tilapia-2/
  • Redmon J, Farhadi A. 2018. YOLOv3: An incremental improvement. ArXiv.
  • Saminiano B. 2020. Feeding Behavior Classification of Nile Tilapia (Oreochromis niloticus) using Convolutional Neural Network. International Journal of Advanced Trends in Computer Science and Engineering 9(1.1 S I), 259–263. https://doi.org /10.30534/ijatcse/2020/4691.12020
  • Wang H, Zhang S, Zhao S, Wang Q, Li D, Zhao R. 2022. Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Computers and Electronics in Agriculture 192, 106512. https://doi.org/10.1016 /J.COMPAG.2021.106512
  • Yu C, Fan X, Hu Z, Xia X, Zhao Y, Li R, Bai Y. 2020. Segmentation and measurement scheme for fish morphological features based on Mask R-CNN. Information Processing in Agriculture 7(4), 523–534. https://doi.org/10.1016/J.INPA.2020.01.002