Published March 1, 2024 | Version v1
Journal article Open

Towards a new approach to maximize tax collection using machine learning algorithms

  • 1. Abdelmalek Essaadi University

Description

Efficient tax debt collection is a challenge for Moroccan local tax authorities. This article explores the potential of machine learning techniques and novel strategies to enhance efficiency in this process. We present a practical use case demonstrating the application of machine learning for taxpayer segmentation, improving accuracy in identifying high-risk debtors. Using a comprehensive dataset of tax payment behavior, we showcase the effectiveness of machine learning algorithms in segmenting taxpayers based on their likelihood of noncompliance or debt accumulation. We also investigate innovative strategies that integrate behavioral economics principles to enable better targeted interventions. Real-world case studies in local tax debt collection highlight the impact of these strategies. The findings underscore the transformative potential of machine learning techniques and novel strategies in improving the efficiency of local tax debt collection. Accurate identification of high-risk debtors and tailored enforcement actions help maximize revenue while minimizing resource waste. This research contributes to the existing knowledge by providing insights into the implementation of machine learning techniques and novel strategies in tax debt collection. It emphasizes the importance of data-driven approaches and highlights how local tax authorities can drive efficiency and optimize revenue collection by embracing these advancements.

Files

17 24311.pdf

Files (467.5 kB)

Name Size Download all
md5:b6c42b416e845e2a83b09dff3c6ad8e5
467.5 kB Preview Download