Published December 1, 2021 | Version v1
Journal article Open

Evaluation of hydrophilic and lipophilic antioxidant capacity in Spanish tomato paste: usefulness of front-face total fluorescence signal combined with parafac

  • 1. Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, y Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad,(IACYS), Universidad de Extremadura
  • 2. Departamento de Química Analítica, Universidad de Extremadura
  • 3. Department of Analytical Sciences, National Distance Education University (UNED)
  • 4. National Agro-Food Technology Center of Extremadura (CTAEX)
  • 5. Departamento de Química Analítica, Universidad de Extremadura y Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura

Description

The hydrophilic and lipophilic antioxidant activities due to the main bioactive components present in Spanish tomato paste 
samples were studied, using standardized and fuorescent methods. After extraction, phenolic antioxidants (Folin-Ciocalteu 
method) and total antioxidant activity (TEAC assay) were evaluated, examining diferences between hydrophilic and lipophilic extracts corresponding to diferent samples. Total fuorescence spectra of extracts (excitation-emission matrices, 
EEMs) were recorded in the front-face mode at two diferent ranges: 210–300 nm/310–390 nm, and 295–350 nm/380–
480 nm, for excitation and emission, respectively, in the hydrophilic extracts. In the lipophilic extracts, the frst range was 
230–283 nm/290–340 nm, while the second range was 315–383 nm/390–500 nm for excitation and emission, respectively. 
EEMs from a set of 22 samples were analyzed by the second-order multivariate technique Parallel Factor Analysis (PARAFAC). Tentative assignation of the diferent components to the various fuorophores of tomato was tried, based on literature. 
Correlation between the antioxidant activity and score values retrieved for diferent components in PARAFAC model was 
obtained. The possibility of using EEMs-PARAFAC to evaluate antioxidant activity of hydrophilic and lipophilic compounds 
in these samples was examined, obtaining good results in accordance with the Folin-Ciocalteu and TEAC assays.

Files

s12161-021-02175-1_2022 .pdf

Files (2.5 MB)

Name Size Download all
md5:3e388856839a364bf9bd0f3c7ea6f0ab
2.5 MB Preview Download

Additional details

Identifiers

Dates

Accepted
2021-11-01

References

  • Adília Lemos M, Sárniková K, Bot F et al (2015) Use of time-resolved fluorescence to monitor bioactive compounds in plant based foodstufs. Biosensors 5:367–397. https://doi.org/10.3390/bios5 030367 Anaya JPR 2013) Infuencia de las técnicas culinarias sobre el contenido de polifenoles y capacidad antioxidante en hortalizas de la dieta mediterránea. Granada Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38:149–171 Bro R, Kiers HAL (2003) A new efcient method for determining the number of components in PARAFAC models. J Chemom 17:74– 286. https://doi.org/10.1002/cem.801 Canene-Adams K, Campbell J K, Zaripheh S et al (2005) The tomato as a functional food. American Society for Nutritional Sciences 1226–1230. Capanoglu E, Beekwilder J, Boyacioglu D et al (2008) Changes in Antioxidant and Metabolite Profles during Production of Tomato Paste. J Agric Food Chem 56:964–973 Capanoglu E, Beekwilder J, Boyacioglu D et al (2010) The efect of industrial food processing on potentially health-benefcial tomato antioxidants. Crit Rev Food Sci Nutr 50:919–930. https://doi.org/ 10.1080/10408390903001503 Espinosa-Mansilla E, Muñoz de la Peña A. González Gómez D (2005) Chemical Educator 10:1–9. https://doi.org/10.1333/s008970509 33a García-Alonso FJ, Navarro-González I, Ros G et al (2015) Assessment of the antioxidant properties of tomato extracts: A synergistic approach using in vitro chemical tests and cell-based assays. Acta Aliment 44:297–303. https://doi.org/10.1556/066.2015.44.0006 George B, Kaur C, Khurdiya DS et al (2004) Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem 84:45–51. https://doi.org/10.1016/S0308-8146(03)00165-1 Gümüşay ÖA, Borazan AA, Ercal N et al (2015) Drying efects on the antioxidant properties of tomatoes and ginger. Food Chem 173:156–162. https://doi.org/10.1016/j.foodchem.2014.09.162 Hassoun A, Sahar A, Lakhal L et al (2019) Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fsh and meat products: Impact of diferent preservation conditions. LWT 103:279–292. https://doi.org/10.1016/j. lwt.2019.01.021 Jacob K, García-Alonso FJ, Ros G, Periago MJ (2010) Stability of carotenoids, phenolic compounds, ascorbic acid and antioxidant capacity of tomatoes during thermal processing. Archivos Latinoamericanos de Nutrición (ALAN), 60:192–198. http://www. alanrevista.org/ediciones/2010/2/art-13/ Jurado Capel L (2012) Máster en ciencias analíticas y bioanalíticas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/4196/ TFM_LauraJuradoCapel.pdf?sequence=6&isAllowed=y Koh E, Charoenprasert S, Mitchell AE (2012) Efects of industrial tomato paste processing on ascorbic acid, favonoids and carotenoids and their stability over one-year storage. J Sci Food Agric 92:23–28. https://doi.org/10.1002/jsfa.4580 Konagaya K, Al Riza DF, Nie S et al (2020) Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fuorescence image. Postharvest Biol Technol 160:111031. https:// doi.org/10.1016/j.postharvbio.2019.111031 Lai A, Santangelo E, Soressi GP, Fantoni R (2007) Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epicarp tissue during fruit ripening using fuorescence techniques. Postharvest Biol Technol 43:335–342. https://doi.org/10.1016/j.postharvbio.2006.09.016 Lei T, Sun DW (2019) Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends Food Sci Technol 88:527–542. https://doi.org/10.1016/j.tifs.2019.04.013 Lenucci MS, Cadinu D, Taurino M, Piro G et al (2006) Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54:2606–2613. https://doi.org/10.1021/jf052920c Martí R (2018). Metodologías para la evaluación del contenido en polifenoles en tomate aplicadas al estudio del efecto del genotipo y de estrategias de cultivo respetuosas con el medio ambiente. https://www.tesisenred.net/bitstream/handle/10803/461096/2018_ Tesis_Marti Renau_Raul.pdf?sequence=1&isAllowed=y Martínez-Valverde I, Periago MJI, Chesson A, Provan G (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agric 82:323–330. https://doi.org/10.1002/jsfa.1035 Mediterranean diet (2013). https://ich.unesco.org/en/decisions/8. COM/8.10 Miller NJ, Rice-Evans CA (1997) Factors infuencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Food Analytical Methods (2022) 15:981–992 991 1 3 Radical Res 26:195–199. https://doi.org/10.3109/1071576970 9097799 Moharram HA, Youssef MM (2014) Methods for Determining the Antioxidant Activity : A Review. Alex J Food Sci Technol 11:31– 41. https://doi.org/10.12816/0025348 Olivieri AC, Escandar GM (2014) Practical Three-Way Calibration. Elsevier Olivieri AC, Wu HL, Yu RQ (2009) MVC2: A MATLAB graphical interface toolbox for second-order multivariate calibration. Chemom Intell Lab Syst 96:246–251. https://doi.org/10.1016/j. chemolab.2009.02.005 Orzel J, Stanimirova I, Czarnik-Matusewicz B et al (2015) Prediction of the hydrophilic antioxidant capacity of tomato pastes from the IR and fuorescence excitation-emission spectra of extracts and intact samples. Talanta 138:64–70. https://doi.org/10.1016/j.talan ta.2015.01.026 Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME et al (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res Int 41:274–285. https://doi.org/10. 1016/j.foodres.2007.12.004 Pisoschi AM, Negulescu GP (2012) Methods for Total Antioxidant Activity Determination: A Review. Biochemistry and Analytical Biochemistry 1:1–10. https://doi.org/10.4172/2161-1009.1000106 Pisoschi AM, Pop A, Cimpeanu C et al (2016) Antioxidant capacity determination in plants and plant-derived products: A review. Oxid Med Cell Longev 2016:9130976. https://doi.org/10.1155/ 2016/9130976 Prior RL, Hoang H, Gu L et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279. https://doi.org/10.1021/jf026 2256 Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302. https:// doi.org/10.1021/jf0502698 Romero A, Olives A, Martín M, Del Castillo B et al (2002) Estudio del efecto solvatocrómico en derivados fenólicos naturales Study of the solvatochromic efect on natural phenolic compounds. ARS Pharmaceutica 43:57–71. http://bit.ly/1sqn263 Sahlin E, Savage GP, Lister CE (2004) Investigation of the antioxidant properties of tomatoes after processing. J Food Compos Anal 17:635–647. https://doi.org/10.1016/j.jfca.2003.10.003 Savatović S, Ćetković G, Čanadanović-Brunet J et al (2012) Tomato waste: A potential source of hydrophilic antioxidants. Int J Food Sci Nutr 63:129–137. https://doi.org/10.3109/09637486.2011. 606211 Shaikh S, O'Donnell C (2017) Applications of fuorescence spectroscopy in dairy processing: a review. Curr Opin Food Sci 17:16–24. https://doi.org/10.1016/j.cofs.2017.08.004 Sof F, Abbate R, Gensini G et al (2010) Accruing evidence on benefts of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am J Clin Nutr 92:1189–1196. https://doi.org/10.3945/ajcn.2010.29673 Toor RK, Savage GP (2005) Antioxidant activity in diferent fractions of tomatoes. Food Res Int 38:487–494. https://doi.org/10.1016/j. foodres.2004.10.016 Trichopoulou A, Martínez-González MA, Tong TYN et al (2014) Defnitions and potential health benefts of the Mediterranean diet: Views from experts around the world. BMC Med 12:1–6. https:// doi.org/10.1186/1741-7015-12-112 Vallverdú-Queralt A, Medina-Remón A, Martínez-Huélamo M et al (2011) Phenolic profle and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J Agric Food Chem 59:3994–4001. https://doi.org/10.1021/jf104400g Wu X, Beecher GR, Holden JM et al (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026–4037. https://doi.org/10.1021/jf049 696w Zanfni A, Franchi GG, Massarelli P et al (2017) Phenolic compounds, carotenoids and antioxidant activity in fve tomato (lycopersicon esculentum mill.) cultivars. Ital J Food Sci 29:90–99