Published January 12, 2011 | Version v1
Journal article Open

Photochromic organic–inorganic hybrid materials

  • 1. ROR icon Instituto de Ciencia de Materiales de Madrid

Description

Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.

Files

Chem. Soc. Rev., 2011, 40, 672–687.pdf

Files (6.0 MB)

Name Size Download all
md5:faef439865c53a177711eae64766c29d
6.0 MB Preview Download

Additional details

Identifiers

Dates

Accepted
2011-01-12

References

  • 1 G. H. Brown, Photochromism; techniques of chemistry, John Wiley & Sons, New York, 1971, vol. 3. 2 J. C. Crano and R. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, 1999, vol. 2. 3 H. Du¨rr and H. Bouas-Laurent, Photochromism; molecules and systems, rev. ed. J.-M. Lehn, Elsevier, Amsterdam, 2003; H. Bouas-Laurent and H. Du¨rr, Pure Appl. Chem., 2001, 73(4), 639. 4 I. Washington, C. Brooks, N. J. Turro and K. Nakanishi, J. Am. Chem. Soc., 2004, 126, 9892. 5 W. H. Armistead and S. D. Stookey, Science, 1964, 144, 150; L. Ferley, T. Mattern and G. Lehmann, J. Non-Cryst. Solids, 1987, 92, 107; M. Zayat, D. Einot and R. Reisfeld, J. Sol-Gel Sci. Technol., 1997, 10, 203. 6 M. Zayat, Photochromic, electrochromic and gasochromic glasses prepared by sol–gel method, PhD Thesis, Hebrew University of Jerusalem, 1997. 7 T. W. Kool and M. Glasbeek, J. Phys.: Condens. Matter, 1993, 5, 361; B. Paci, J. M. Nunzi, N. Sertova and I. Petkov, J. Photochem. Photobiol., A, 2000, 137, 141; A. Kriltz, R. Fachet, M. Mu¨ller and H. Bu¨rger, J. Sol-Gel Sci. Technol., 1998, 11, 197; R. Fachet, M. Mu¨ller, H. Bu¨rger and A. Kriltz, Glastech. Ber. Glass Sci. Technol., 2000, 73, 239; M. A. El-Sayed, J. Phys. Chem., 1964, 68, 433. 8 S. Kobatake and M. Irie, Annu. Rep. Prog. Chem., Sect. C, 2003, 99, 277; V. Minkin, Chem. Rev., 2004, 104, 2751. 9 S. Kawauchi, H. Yoshida, N. Yamashina, M. Ohira, S. Saeda and M. Irie, Bull. Chem. Soc. Jpn., 1990, 63, 267. 10 N. Y. C. Chu, Sol. Energy Mater., 1986, 14, 215. 11 L. H. Yee, T. Hanley, R. A. Evans, T. P. Davis and G. E. Ball, J. Org. Chem., 2010, 75, 2851 and references therein; E. J. Harbron, C. M. Davis, J. K. Campbell, R. M. Allred, M. T. Kovary and N. J. Economou, J. Phys. Chem. C, 2009, 113, 13707; D. K. Lee, H. G. Cha, U. Pal and Y. S. Kang, J. Phys. Chem. B, 2009, 113, 12923; A. Lafuma, S. ChodorowskiKimmes, F. X. Quinn and C. Sanchez, Eur. J. Inorg. Chem., 2003, 331. 12 C. Sanchez, B. Julia´n, P. Belleville and M. Popall, J. Mater. Chem., 2005, 15, 3559. 13 C. Sanchez, B. Lebeau, F. Chaput and J.-P. Boilot, Adv. Mater., 2003, 15, 1969. 14 M. M. Alam, F. O. Lucas, D. Danieluk, A. L. Bradley, K. V. Rajani, S. Daniels and P. J. McNally, J. Phys. D: Appl. Phys., 2009, 42, 225307; Z. H. Chen, Y. A. Yang, J. B. Qiu and J. N. Yao, Langmuir, 2000, 16, 722; H. H. Ke, K. Shao, T. He, G. J. Zhang, W. S. Yang and J. N. Yao, J. Mater. Sci. Lett., 2002, 21, 1257 and references therein. 15 T. He and J. Yao, Prog. Mater. Sci., 2006, 51, 810. 16 M.-S. Wang, G. Xu, Z.-J. Zhang and G.-C. Guo, Chem. Commun., 2010, 46, 361, and references therein; G. Xu, G.-C. Guo, Downloaded by CINDOC. Biblioteca de Ciencia y Tecnología on 23 May 2011 Published on 12 January 2011 on http://pubs.rsc.org | doi:10.1039/C0CS00065E View Online 686 Chem. Soc. Rev., 2011, 40, 672–687 This journal is c The Royal Society of Chemistry 2011 M.-S. Wang, Z.-J. Zhang, W.-T. Chen and J.-S. Huang, Angew. Chem., Int. Ed., 2007, 46, 3249. 17 A. Bousseksou, G. Milnar, P. Demont and J. Menegotto, J. Mater. Chem., 2003, 13, 2069; P. Judeinstein, P. W. Oliveira, H. Krug and H. Schmidt, Adv. Mater. Opt. Electron., 1997, 7, 123. 18 Y. Huang, Q. Y. Pan, X. W. Dong and Z. X. Cheng, Mater. Chem. Phys., 2006, 97, 431, and references therein; T. R. Zhang, W. Feng, R. Lu, C. Y. Bao, T. J. Li, Y. Y. Zhao and J. N. Yao, Mater. Chem. Phys., 2002, 78, 380. 19 G. Bercovik, V. Krongauz and V. Weiss, Chem. Rev., 2000, 100, 1741; V. R. Kaufman, D. Levy and D. Avnir, J. Non-Cryst. Solids, 1986, 82, 103; D. Presto, J. C. Pouxviel, T. Novinson, W. C. Kaska, B. Dunn and J. I. Zink, J. Phys. Chem., 1990, 94, 4167; F. Ribot, A. Lafuma, C. Eychenne-Baron and C. Sanchez, Adv. Mater., 2002, 14, 1496; G. Wirnsberger, B. J. Scott, B. F. Chmelk and G. D. Stucky, Adv. Mater., 2000, 12, 1450. 20 N. Andersson, P. Alberius, J. O¨rtegren, M. Lindgren and L. Bergstro¨m, J. Mater. Chem., 2005, 15, 3507. 21 C. J. Brinker and G. W. Sherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic Press, San Diego, 1990; L. L. Hench and J. K. West, Chem. Rev., 1990, 90, 33; J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 1988, 18, 1988. 22 D. Avnir, D. Levy and R. Reisfeld, J. Phys. Chem., 1984, 88, 5956. 23 C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007. 24 C. Rottman, G. Grader and D. Avnir, Chem. Mater., 2001, 13, 3631; C. Rottman, G. S. Grader, Y. De Hazan and D. Avnir, Langmuir, 1996, 12, 5505; R. Pardo, M. Zayat and D. Levy, J. Photochem. Photobiol., A, 2010, 210, 17. 25 F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem., 2005, 15, 3787. 26 A. Rivaton, J.-L. Gardette, B. Mailhot and S. Morlat-Therlas, Macromol. Symp., 2005, 225, 129; S. Nespurek and J. Pospisil, J. Optoelectron. Adv. Mater., 2005, 7, 1157. 27 V. R. Kaufman, D. Levy and D. Avnir, J. Non-Cryst. Solids, 1986, 82, 103; D. Levy and D. Avnir, J. Phys. Chem., 1988, 92, 4734; D. Levy, S. Einhorn and D. Avnir, J. Non-Cryst. Solids, 1989, 113, 137. 28 D. Levy, Chem. Mater., 1997, 9, 2666; D. Levy and L. Esquivias, Adv. Mater., 1995, 7, 120; C. Guermeur, C. Sanchez, B. Schaudel, K. Nakatami, J. A. Delaire, F. de Monte and D. Levy, SPIE Sol–Gel Optics IV, 1997, 3136, 10; C. W. Kim, S. W. Oh, Y. H. Kim, H. G. Cha and Y. S. Kang, J. Phys. Chem. C, 2008, 112, 1140. 29 L. Hou, B. Hoffmann, M. Mennig and H. Schmidt, J. Sol-Gel Sci. Technol., 1994, 2, 635; L. Hou and H. Schmidt, Mater. Lett., 1996, 27, 215; J. Biteau, G. M. Tsivgoulis, F. Chaput, J. P. Boilot, S. Gilat, S. Kawai, J. M. Lehn, B. Darracq, F. Martin and Y. Levy, Mol. Cryst. Liq. Cryst., 1997, 297, 65; J. Biteau, F. Chaput and J. P. Boilot, J. Phys. Chem., 1996, 100, 9024; W. S. Kwak and J. C. Crano, PPG Tech. J., 1996, 2, 45. 30 B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatini and J. A. Delaire, J. Mater. Chem., 1997, 7, 61. 31 (a) M. Zayat, R. Pardo and D. Levy, J. Mater. Chem., 2003, 13, 2899; (b) R. Pardo, M. Zayat and D. Levy, J. Mater. Chem., 2005, 15, 703; (c) R. Pardo, M. Zayat and D. Levy, J. Mater. Chem., 2006, 16, 1734; (d) M. Zayat and D. Levy, J. Mater. Chem., 2003, 13, 727; (e) R. Pardo, M. Zayat and D. Levy, C. R. Chim., 2010, 13, 212; (f) A. Alvarez-Herrero, R. Pardo, M. Zayat and D. Levy, J. Opt. Soc. Am. B, 2007, 24, 2097. 32 R. S. Becker and J. Michl, J. Am. Chem. Soc., 1966, 88, 5931. 33 A. Kumar, Mol. Cryst. Liq. Cryst., 1997, 297, 139; B. Van Gemert, A. Kumar and D. B. Knowles, Mol. Cryst. Liq. Cryst., 1997, 297, 131. 34 J. J. Luthern, Mol. Cryst. Liq. Cryst., 1997, 297, 155; M. Frigoli, C. Moustrou, A. Samat and R. Guglielmetti, Helv. Chim. Acta, 2000, 83, 3043; C. D. Gabbutt, T. Gelbrich, J. D. Hepworth, B. M. Heron, M. B. Hursthouse and S. M. Partington, Dyes Pigm., 2002, 54, 79; C. I. Martins, P. J. Coelho, L. M. Carvalho and A. M. F. OliveiraCampos, Tetrahedron Lett., 2002, 43, 2203. 35 B. Luccioni-Houze´, M. Campredon, R. Guglielmetti and G. Giusti, Mol. Cryst. Liq. Cryst., 1997, 297, 161–165; D. B. Knowles, US Patent, 5,238,981, 1993; A. Kumar, B. Van Gemert and D. B. Knowles, US Patent, 5,458,814, 1995; C. M. Nelson, A. Chopra, D. B. Knowles, B. Van Gemert and A. Kumar, US Patent, 6,348,604, 2002. 36 H. Frenkel-Mullerad and D. Avnir, Chem. Mater., 2000, 12, 3754. 37 R. Gautron, Bull. Soc. Chim. Fr., 1968, 8, 3200. 38 C. Salemi-Delvaux, C. Aubert, M. Campredom, G. Giusti and R. Guglielmetti, Mol. Cryst. Liq. Cryst., 1997, 298, 45; C. Salemi-Delvaux, G. Giusti and R. Guglielmetti, Mol. Cryst. Liq. Cryst., 1997, 298, 53. 39 G. Balliet, Mol. Cryst. Liq. Cryst., 1997, 298, 75. 40 G. Baillet, G. Giusti and R. Guglielmetti, J. Photochem. Photobiol., A, 1993, 70, 157; G. Baillet, M. Campredom, R. Guglielmetti, G. Giusti and C. Aubert, J. Photochem. Photobiol., A, 1994, 83, 147; V. Malatesta, M. Milosa, R. Millini, L. Manzini, L. Lanzini, P. Bortolus and S. Monti, Mol. Cryst. Liq. Cryst., 1994, 246, 303; C. Salemi-Delvaux, B. Luccioni-Houze, G. Balliet, G. Giusti and R. Guglielmetti, J. Photochem. Photobiol., A, 1995, 91, 223. 41 T. Yoshida and A. Morinaka, J. Photochem. Photobiol., A, 1992, 63, 227. 42 R. Pardo, M. Zayat and D. Levy, J. Sol-Gel Sci. Technol., 2006, 40, 365. 43 V. Malatesta, J. Hobley and C. Salemi-Delvaux, Mol. Cryst. Liq. Cryst., 2000, 344, 69; R. Demadrille, M. Campredom, R. Guglielmetti and G. Giusti, Mol. Cryst. Liq. Cryst., 2000, 345, 1. 44 R. Pardo, M. Zayat and D. Levy, J. Photochem. Photobiol., A, 2008, 198, 232. 45 C. Reichardt, Chem. Rev., 1994, 94, 2319. 46 B. Dunn and J. I. Zink, Chem. Mater., 1997, 9, 2280. 47 I. K. Konstantinou and T. A. Albanis, Appl. Catal., B, 2004, 49, 1; P. Bouras and P. Lianos, J. Appl. Electrochem., 2005, 35, 831. 48 Y. Hirshberg, J. Am. Chem. Soc., 1956, 68, 2304. 49 B. Van Germert and M. P. Bergoni, US Patent, 5,066,818, 1991; D. B. Knowles, US Patent, 5,238,981, 1993. 50 D. Levy, F. de Monte, J. M. Oto´n, G. Fiskman, I. Matı´as, P. Datta and M. Lo´pez-Amo, J. Sol-Gel Sci. Technol., 1997, 8, 931; D. Levy, M. Lo´pez-Amo, J. M. Oto´n, F. del Monte, P. Datta and I. Matı´as, J. Appl. Phys., 1995, 77, 2804. 51 D. Levy, Mol. Cryst. Liq. Cryst., 1997, 297, 31. 52 O. Levy, S. Shalom, I. Benjamin, G. Perepelitsa, A. J. Agranat, R. Neumann, Y. Avny and D. Davidov, Synth. Met., 1999, 102, 1178; M. Serwadczak and S. Kucharski, J. Sol-Gel Sci. Technol., 2006, 37, 57; S. Fu, W. Hu, M. Xie, Y. Liu and Q. Duanmu, J. Appl. Polym. Sci., 2009, 111, 2157. 53 (a) X. D. Sun, X. J. Wang, W. Shan, J. J. Song, M. G. Fan and E. T. Knobbe, J. Sol-Gel Sci. and Technol., 1997, 9, 169; (b) P. Feneyrou, F. Soyer, P. Le Barny, E. Ishow, M. Sliwa and J. A. Delaire, Photochem. Photobiol. Sci., 2003, 2, 195. 54 J. C. Crano, T. Flood, D. Knowles, A. Kumar and B. Van Germert, Pure Appl. Chem., 1996, 68, 1395. 55 K. Goudjil, US Patent, 5581090, 1996; K. Goudjil and R. Sandoval, Sens. Rev., 1998, 18, 176; K. Goudjil, US Patent, 6437346, 2002; K. Ock, N. Jo, J. Kim, S. Kim and K. Koh, Synth. Met., 2001, 117, 131. 56 M. Volkan, D. L. Stokes and T. Vo-Dinh, Sens. Actuators, B, 2005, 106, 660; Y. K. Tang, J. Xu, W. L. Wang, Y. Fang and F. F. Yang, Advanced sensor systems and applications II, Proc. Spie, 2005, 5634, 669. 57 (a) I. R. Matias, M. Lopez-Amo, G. Fiksman, J. M. Oton, D. Levy and F. del Monte, Opt. Eng., 1998, 37, 2620; (b) M. R. di Nunzio, P. L. Gentili, A. Romani and G. Favaro, ChemPhysChem, 2008, 9, 768; M. R. di Nunzio, P. L. Gentili, A. Romani and G. Favaro, J. Phys. Chem. C, 2010, 114, 6123; (c) C. Tard, S. Perruchas, S. Maron, X. F. Le Goff, F. Guillen, A. Garcia, J. Vigneron, A. Etcheberry, T. Gacoin and J. P. Boilot, Chem. Mater., 2008, 20, 7010 and references therein; C. O. Avellaneda and L. O. S. Bulhoes, Sol. Energy Mater. Sol. Cells, 2006, 90, 395. 58 B. L. Feringa, Molecular Switches, Wiley-VCH, 2001; M. Irie, Chem. Rev., 2000, 100, 1685; G. Berkovic, V. Krongauz and V. Weiss, Chem. Rev., 2000, 100, 1741; F. M. Raymo and M. Tomasulo, Chem. Soc. Rev., 2005, 34, 327; W. Yuan, L. Sun, H. Tang, Y. Wen, G. Jiang, W. Huang, L. Jiang, Y. Song, H. Tian and D. Zhu, Adv. Mater., 2005, 17, 156. 59 S. Kawata and Y. Kawata, Chem. Rev., 2000, 100, 1777; H. Tian and S. G. Yang, Chem. Soc. Rev., 2004, 33, 85. Downloaded by CINDOC. Biblioteca de Ciencia y Tecnología on 23 May 2011 Published on 12 January 2011 on http://pubs.rsc.org | doi:10.1039/C0CS00065E View Online This journal is c The Royal Society of Chemistry 2011 Chem. Soc. Rev., 2011, 40, 672–687 687 60 R. Pardo, M. Zayat and D. Levy, J. Mater. Chem., 2009, 19, 6756. 61 O. Pieroni, A. Fissi, N. Angelini and F. Lenci, Acc. Chem. Res., 2001, 34, 9; H. R. Hafiz and F. Nakanishi, Nanotechnology, 2003, 14, 649. 62 (a) T. Cheng, T. Lin, R. Brady and X. Wang, Fibers Polym., 2008, 9, 301; (b) T. Cheng, T. Lin, R. Brady and X. Wang, Fibers Polym., 2008, 9, 521; (c) K. S. Chodorowski, A. Lafuma, F. X. Quinn and C. Sanchez, FR Patent, 2838960, 2006.