Published February 13, 2024
| Version v1
Journal article
Open
Deriving Continuity Equation using SymPy
Creators
- 1. Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh
Description
Continuity equation which is the mass conservation equation is the first equation to look for any thermal and fluid science problem. In this short communication SymPy has been used to derive continuity equation in the differential form. The approach will reduce the hand calculation time and help the users in focusing the concepts more rather than tedious calculations. The concept presented here can also be used in deriving other equations and proofs.
Files
Deriving Continuity Equation using SymPy.pdf
Files
(522.6 kB)
Name | Size | Download all |
---|---|---|
md5:10defab3a55cc3a25cc346145d00d162
|
522.6 kB | Preview Download |
Additional details
References
- Som, S. K. (2008). Introduction to fluid mechanics and fluid machines. The McGraw Hill Companies.
- Radev, S., Onofri, F. R. A., Lenoble, A., & Tadrist, L. (2013). Fluid Mechanics. Journal of Theoretical and Applied Mechanics, 43(2), 5.
- White, F. M., & Majdalani, J. (2006). Viscous fluid flow (Vol. 3, pp. 433-434). New York: McGraw-Hill.
- Pawar, P. S., Mishra, D. R., & Dumka, P. (2022). Solving first order ordinary differential equations using least square method: a comparative study. Int J Innov Sci Res Technol, 7(3), 857-864.
- Dumka, P., Rana, K., Tomar, S. P. S., Pawar, P. S., & Mishra, D. R. (2022). Modelling air standard thermodynamic cycles using python. Advances in Engineering Software, 172, 103186.
- Dumka, P., Chauhan, R., Singh, A., Singh, G., & Mishra, D. (2022). Implementation of Buckingham's Pi theorem using Python. Advances in Engineering Software, 173, 103232.
- Dumka, P., Gajula, K., Sharma, V., & Mishra, D. R. (2022). First Law of Thermodynamics for Closed System: A Python Approach. Research and Applications of Thermal Engineering, 5(3).
- Pawar, P. S., Mishra, D. R., Dumka, P., & Pradesh, M. (2022). Obtaining exact solutions of viscoincompressible parallel flows using python. Int J Eng Appl Sci Technol, 6(11), 213-217.
- Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., ... & Scopatz, A. M. (2017). SymPy: symbolické výpočty v Pythonu.
- Cywiak, M., & Cywiak, D. (2021). SymPy. In Multi-Platform Graphics Programming With Kivy: Basic Analytical Programming for 2D, 3D, and Stereoscopic Design (pp. 173-190). Berkeley, CA: Apress.