Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published January 16, 2024 | Version v1
Journal article Open

Personalized Algorithmic Recourse with Preference Elicitation

  • 1. ROR icon Fondazione Bruno Kessler
  • 2. ROR icon University of Trento
  • 3. ROR icon Lamsade
  • 4. ROR icon French National Centre for Scientific Research
  • 5. Université Paris-Dauphine

Description

Algorithmic Recourse (AR) is the problem of computing a sequence of actions that – once performed by a user – overturns an undesirable machine decision. It is paramount that the sequence of actions does not require too much effort for users to implement. Yet, most approaches to AR assume that actions cost the same for all users, and thus may recommend unfairly expensive recourse plans to certain users. Prompted by this observation, we introduce PEAR, the first human-in-the-loop approach capable of providing personalized algorithmic recourse tailored to the needs of any end-user. PEAR builds on insights from Bayesian Preference Elicitation to iteratively refine an estimate of the costs of actions by asking choice set queries to the target user. The queries themselves are computed by maximizing the Expected Utility of Selection, a principled measure of information gain accounting for uncertainty on both the cost estimate and the user’s responses. PEAR integrates elicitation into a Reinforcement Learning agent coupled with Monte Carlo Tree Search to quickly identify promising recourse plans. Our empirical evaluation on real-world datasets highlights how PEAR produces high-quality personalized recourse in only a handful of iterations.

Files

1700_personalized_algorithmic_recou.pdf

Files (4.8 MB)

Name Size Download all
md5:82f805e200aa575a4ab4f2a11d3b3ea3
4.8 MB Preview Download

Additional details

Funding

ELIAS – European Lighthouse of AI for Sustainability 101120237
European Commission