There is a newer version of the record available.

Published February 11, 2024 | Version v1
Dataset Open

Text generated by OPUS-MT and T5 models with single-bit errors in the parameters

  • 1. ROR icon Tianjin University
  • 2. ROR icon Universidad Politécnica de Madrid
  • 3. ROR icon University of Electronic Science and Technology of China
  • 4. ROR icon Northeastern University

Description

Description

The dataset contains text generated using T5 and OPUS-MT model with and with single-bit errors in the parameters of the LLM. The T5 LLM used the CNN Daily Mail dataset for summarization and OPUS-MT used the IWSLT2017 dataset for Chinese-to-English translation.

Files:

  • {cnn/iwslt2017}_input_text.txt: Input text, that is, text to summarize (cnn and T5) or Chinese text to translate (iwslt2017 and OPUS-MT).  For each dataset in total there are number_input_texts.
  • {cnn/iwslt2017}_output_reference.txt: Example of result expected for CNN (T5) and IWSLT2017 (OPUS-MT). For each dataset in total there are number_input_texts.
  • {cnn/iwslt2017}_output_predict_fault_free: Example of predictions without single-bit errors. For each dataset in total there are number_input_texts.
  • {cnn/iwslt2017}_output_predict_single_fi_bit_100times: Example of predictions with 100 different single-bit error. In each dataset in total there are 100*number input texts.

Paper

@ARTICLE{11145323,
  author={Zhu, Jinhua and Conde, Javier and Gao, Zhen and Reviriego, Pedro and Liu, Shanshan and Lombardi, Fabrizio},
  journal={IEEE Transactions on Computers}, 
  title={Concurrent Linguistic Error Detection (CLED): a New Methodology for Error Detection in Large Language Models}, 
  year={2025},
  volume={},
  number={},
  pages={1-14},
  keywords={Protection;Feature extraction;Machine learning;Neural networks;Linguistics;Computational modeling;Electronic mail;Transformers;Large language models;Hardware;LLMs;soft errors;concurrent error detection;T5;OPUS-MT},
  doi={10.1109/TC.2025.3603682}}

 

Files

cnn_input_text.txt

Files (1.1 GB)

Name Size Download all
md5:4abe275a03e97cbc31f9ca3d8414103e
45.7 MB Preview Download
md5:b31aa107cb18ba774df7bef99f1031d4
3.4 MB Preview Download
md5:d2e1117dc9b22d95238ccffb485d31b8
462.7 MB Preview Download
md5:bd0d0ca871121e9bf7ef357963ad01f9
3.6 MB Preview Download
md5:5cf4b7565d93eeba8cae2b7e22a05053
755.3 kB Preview Download
md5:daf46ad0af7e7f79ab919d15d4f7e033
761.2 kB Preview Download
md5:1686d27cfb3da92271d1e046d12129c9
545.7 MB Preview Download
md5:0d6785705aabed736d1a62323939eb01
799.0 kB Preview Download

Additional details

Related works

Is published in
Publication: 10.48550/arXiv.2403.16393 (DOI)