Text generated by OPUS-MT and T5 models with single-bit errors in the parameters
Authors/Creators
Description
Description
The dataset contains text generated using T5 and OPUS-MT model with and with single-bit errors in the parameters of the LLM. The T5 LLM used the CNN Daily Mail dataset for summarization and OPUS-MT used the IWSLT2017 dataset for Chinese-to-English translation.
Files:
- {cnn/iwslt2017}_input_text.txt: Input text, that is, text to summarize (cnn and T5) or Chinese text to translate (iwslt2017 and OPUS-MT). For each dataset in total there are number_input_texts.
- {cnn/iwslt2017}_output_reference.txt: Example of result expected for CNN (T5) and IWSLT2017 (OPUS-MT). For each dataset in total there are number_input_texts.
- {cnn/iwslt2017}_output_predict_fault_free: Example of predictions without single-bit errors. For each dataset in total there are number_input_texts.
- {cnn/iwslt2017}_output_predict_single_fi_bit_100times: Example of predictions with 100 different single-bit error. In each dataset in total there are 100*number input texts.
Paper
@ARTICLE{11145323,
author={Zhu, Jinhua and Conde, Javier and Gao, Zhen and Reviriego, Pedro and Liu, Shanshan and Lombardi, Fabrizio},
journal={IEEE Transactions on Computers},
title={Concurrent Linguistic Error Detection (CLED): a New Methodology for Error Detection in Large Language Models},
year={2025},
volume={},
number={},
pages={1-14},
keywords={Protection;Feature extraction;Machine learning;Neural networks;Linguistics;Computational modeling;Electronic mail;Transformers;Large language models;Hardware;LLMs;soft errors;concurrent error detection;T5;OPUS-MT},
doi={10.1109/TC.2025.3603682}}
Files
cnn_input_text.txt
Files
(1.1 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:4abe275a03e97cbc31f9ca3d8414103e
|
45.7 MB | Preview Download |
|
md5:b31aa107cb18ba774df7bef99f1031d4
|
3.4 MB | Preview Download |
|
md5:d2e1117dc9b22d95238ccffb485d31b8
|
462.7 MB | Preview Download |
|
md5:bd0d0ca871121e9bf7ef357963ad01f9
|
3.6 MB | Preview Download |
|
md5:5cf4b7565d93eeba8cae2b7e22a05053
|
755.3 kB | Preview Download |
|
md5:daf46ad0af7e7f79ab919d15d4f7e033
|
761.2 kB | Preview Download |
|
md5:1686d27cfb3da92271d1e046d12129c9
|
545.7 MB | Preview Download |
|
md5:0d6785705aabed736d1a62323939eb01
|
799.0 kB | Preview Download |
Additional details
Related works
- Is published in
- Publication: 10.48550/arXiv.2403.16393 (DOI)