Published February 1, 2024 | Version v1
Journal article Open

Effect of Swathing or Direct Combining on Yield, Seed Losses and Costs of Camelina

Description

Effect of Swathing or Direct Combining on Yield, Seed Losses and Costs of Camelina 

Abstract: Camelina is an interesting crop and producers must adopt cultural practices to achieve
the highest yield and oil content possible. Considering the size of the seed, the harvesting phase is
crucial to reduce losses and maximize income. Furthermore, in recent years, with the worsening
of climatic conditions due to global warming, crop management can no longer follow the classic
seasonality but must adapt to new climatic conditions. The possibility of double cropping, that is
the process of producing two crops in a single season, allows multiple advantages such as weed
control, greater remuneration, and less exposure to bare soil which determine greater resilience of
the production system. To enable this, especially in recent years, even a few days of difference in
the cultivation phases can guarantee the success of double cropping. For these reasons, the authors
compared two different harvesting strategies: direct combining at full maturity (DC); swathing +
combining at full maturity (SW). The working performance, cost, and seed losses associated with
each harvesting method were calculated. The results highlighted how SW reduced the crop cycle
length by 11 days, did not influence seed losses and crop yield but showed lower performance and
higher cost with respect to DC.

Files

agronomy-14-00325.pdf

Files (2.8 MB)

Name Size Download all
md5:f7108f253df70f5f3650c9917688c3e9
2.8 MB Preview Download

Additional details

References

  • Martinelli, T.; Galasso, I. Phenological Growth Stages of Camelina Sativa According to the Extended BBCH Scale. Ann. Appl. Biol. 2011, 158, 87–94. [CrossRef]
  • Zanetti, F.; Eynck, C.; Christou, M.; Krzyz˙aniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic Performance and Seed Quality Attributes of Camelina (Camelina Sativa L. Crantz) in Multi-Environment Trials across Europe and Canada. Ind. Crops Prod. 2017, 107, 602–608. [CrossRef]
  • Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [CrossRef]
  • Zanetti, F.; Alberghini, B.; Marjanovi´c Jeromela, A.; Grahovac, N.; Rajkovi´c, D.; Kiprovski, B.; Monti, A. Camelina, an Ancient Oilseed Crop Actively Contributing to the Rural Renaissance in Europe. A Review. Agron. Sustain. Dev. 2021, 41, 2. [CrossRef]
  • Richard, D.; Leimbrock-Rosch, L.; Keßler, S.; Zimmer, S.; Stoll, E. Impact of Different Mechanical Weed Control Methods on Weed Communities in Organic Soybean Cultivation in Luxembourg. Org. Agric. 2020, 10, 79–92. [CrossRef]
  • George, N.; Hollingsworth, J.; Yang,W.; Kaffka, S. Canola and Camelina as New Crop Options for Cool-season Production in California. Crop Sci. 2017, 57, 693–712. [CrossRef]
  • Berti, M.; Samarappuli, D.; Johnson, B.L.; Gesch, R.W. Integrating Winter Camelina into Maize and Soybean Cropping Systems. Ind. Crops Prod. 2017, 107, 595–601. [CrossRef]
  • del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [CrossRef]
  • Neupane, D.; Lohaus, R.H.; Solomon, J.K.Q.; Cushman, J.C. Realizing the Potential of Camelina Sativa as a Bioenergy Crop for a Changing Global Climate. Plants 2022, 11, 772. [CrossRef] [PubMed]
  • Ahmad, M.; Waraich, E.A.; Hafeez, M.B.; Zulfiqar, U.; Ahmad, Z.; Iqbal, M.A.; Raza, A.; Slam, M.S.; Rehman, A.; Younis, U. Changing Climate Scenario: Perspectives of Camelina Sativa as Low-Input Biofuel and Oilseed Crop. In Global Agricultural Production: Resilience to Climate Change; Springer: Berlin/Heidelberg, Germany, 2023; pp. 197–236.
  • Lohaus, R.H.; Neupane, D.; Mengistu, M.A.; Solomon, J.K.Q.; Cushman, J.C. Five-Year Field Trial of Eight Camelina Sativa Cultivars for Biomass to Be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy 2020, 10, 562. [CrossRef]
  • Roesch-McNally, G.E.; Arbuckle, J.G.; Tyndall, J.C. Barriers to Implementing Climate Resilient Agricultural Strategies: The Case of Crop Diversification in the U.S. Corn Belt. Glob. Environ. Chang. 2018, 48, 206–215. [CrossRef]
  • Paramesh, V.; Ravisankar, N.; Behera, U.K.; Arunachalam, V.; Kumar, P.; Solomon Rajkumar, R.; Dhar Misra, S.; Mohan Kumar, R.; Prusty, A.K.; Jacob, D.; et al. Integrated Farming System Approaches to Achieve Food and Nutritional Security for Enhancing Profitability, Employment, and Climate Resilience in India. Food Energy Secur. 2022, 1, e321. [CrossRef]
  • Dardonville, M.; Bockstaller, C.; Villerd, J.; Therond, O. Resilience of Agricultural Systems: Biodiversity-Based Systems Are Stable, While Intensified Ones Are Resistant and High-Yielding. Agric. Syst. 2022, 197, 103365. [CrossRef]
  • Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of Crop Rotation on Spring Wheat Yield and Pest Occurrence in Different Tillage Systems: A Multi-Year Experiment in Finnish Growing Conditions. Front. Sustain. Food Syst. 2021, 5, 647335. [CrossRef]
  • Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.;Wagentristl, H. Agronomic Evaluation of Camelina Genotypes Selected for Seed Quality Characteristics. Ind. Crops Prod. 2007, 26, 270–277. [CrossRef]
  • Mi´nkowski, K.; Grze´skiewicz, S.; Jerzewska, M.; Ropelewska, M. Chemical composition profile of plant oils with high content of linolenic acids. Zywnosc Nauka Technol. Jakosc 2010, 17, 146–157. [CrossRef]
  • Ciubota-Rosie, C.; Ruiz, J.R.; Ramos, M.J.; Pérez, Á. Biodiesel from Camelina Sativa: A Comprehensive Characterisation. Fuel 2013, 105, 572–577. [CrossRef]
  • Corporan, E.; Edwards, T.; Shafer, L.; DeWitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels. Energy Fuels 2011, 25, 955–966. [CrossRef]
  • Kim, N.; Li, Y.; Sun, X.S. Epoxidation of Camelina Sativa Oil and Peel Adhesion Properties. Ind. Crops Prod. 2015, 64, 1–8. [CrossRef]
  • Karˇcauskien˙ e, D.; Sendžikien˙ e, E.; Makareviˇcien˙ e, V.; Zaleckas, E.; Repšien˙ e, R.; Ambrazaitien˙ e, D. False Flax (Camelina Sativa L.) as an Alternative Source for Biodiesel Production. Zemdirb. Agric. 2014, 101, 161–168. [CrossRef]
  • Mohammed, Y.A.; Chen, C.; Lamb, P.; Afshar, R.K. Agronomic Evaluation of Camelina (Camelina Sativa L. Crantz) Cultivars for Biodiesel Feedstock. Bioenergy Res. 2017, 10, 792–799. [CrossRef]
  • Pilgeram, A.L.; Sands, D.C.; Boss, D.; Dale, N.;Wichman, D.; Lamb, P.; Lu, C.; Barrows, R.; Kirkpatrick, M.; Thompson, B.; et al. Camelina Sativa, a Montana omega-3 fatty acid and fuel crop. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, Egypt, 2007; pp. 129–131.
  • Steppa, R.; Cie´slak, A.; Szumacher-Strabel, M.; Bieli ´nska-Nowak, S.; Bryszak, M.; Stanisz, M.; Szkudelska, K. Blood Serum Metabolic Profile and Fatty Acid Composition in Sheep Fed Concentrates with Camelina Sativa Cake and Distillers Dried Grains with Solubles. Small Rumin. Res. 2017, 156, 20–26. [CrossRef]
  • Horoszewicz, E.; Pieniak-Lendzion, K.; Niedziółka, R.;Wójcik, E. Fatty Acids Profile and Physicochemical Properties of Muscle Tissue from Male Kids and Ram Lambs Offered Feed Supplemented with Flaxseed. Acta Sci. Pol. Zootech. 2011, 10, 2007–2012.
  • Latterini, F.; Stefanoni,W.; Sebastiano, S.; Baldi, G.M.; Pari, L. Evaluating the Suitability of a Combine Harvester Equipped with the Sunflower Header to Harvest Cardoon Seeds: A Case Study in Central Italy. Agronomy 2020, 10, 1981. [CrossRef]
  • Stefanoni,W.; Latterini, F.; Ruiz, J.; Bergonzoli, S.; Attolico, C.; Pari, L. Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation. Energy 2020, 13, 5329. [CrossRef]
  • Gesch, R.W.; Archer, D.W.; Berti, M.T. Dual CroppingWinter Camelina with Soybean in the Northern Corn Belt. Agron. J. 2014, 106, 1735–1745. [CrossRef]
  • Stefanoni,W.; Latterini, F.; Ruiz, J.P.; Bergonzoli, S.; Palmieri, N.; Pari, L. Assessing the Camelina (Camelina Sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment ofWork Performance and Seed Loss. Sustainability 2020, 13, 195. [CrossRef]
  • Seepaul, R.; Marois, J.; Small, I.; George, S.; Wright, D.L. Optimizing Swathing and Chemical Desiccant Timing to Accelerate Winter Carinata Maturation. Agron. J. 2018, 110, 1379–1389. [CrossRef]
  • Campbell, M. Camelina—An Alternative Oil Crop. In Biokerosene Status Prospect; Springer: Berlin/Heidelberg, Germany, 2018; pp. 259–275.
  • Gesch, R.W.; Mohammed, Y.A.; Walia, M.K.; Hulke, B.S.; Anderson, J. V Double-Cropping Oilseed Sunflower after Winter Camelina. Ind. Crops Prod. 2022, 181, 114811. [CrossRef]
  • Flagella, Z.; Rotunno, T.; Tarantino, E.; Di Caterina, R.; De Caro, A. Changes in Seed Yield and Oil Fatty Acid Composition of High Oleic Sunflower (Helianthus Annuus L.) Hybrids in Relation to the Sowing Date and the Water Regime. Eur. J. Agron. 2002, 17, 221–230. [CrossRef]
  • Barros, J.F.C.; de Carvalho, M.; Basch, G. Response of Sunflower (Helianthus Annuus L.) to Sowing Date and Plant Density under Mediterranean Conditions. Eur. J. Agron. 2004, 21, 347–356. [CrossRef]
  • Seepaul, R.; Kumar, S.; Sidhu, S.; Small, I.M.; George, S.; Douglas, M.; Wright, D.L. Effect of tillage and nitrogen fertility on growth, yield, and seed chemical composition of rainfed Brassica carinata. Agron. J. 2023, 115, 1384–1398. [CrossRef]
  • Vera, C.L.; Downey, R.K.; Woods, S.M.; Raney, J.P.; McGregor, D.I.; Elliott, R.H.; Johnson, E.N. Yield and Quality of Canola Seed as Affected by Stage of Maturity at Swathing. Can. J. Plant Sci. 2007, 87, 13–26. [CrossRef]
  • Latterini, F.; Stefanoni, W.; Cavalaris, C.; Karamoutis, C.; Pari, L.; Alexopoulou, E. Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece. Agronomy 2022, 12, 146. [CrossRef]
  • Jylhä, K.; Tuomenvirta, H.; Ruosteenoja, K.; Niemi-Hugaerts, H.; Keisu, K.; Karhu, J.A. Observed and Projected Future Shifts of Climatic Zones in Europe and Their Use to Visualize Climate Change Information. Weather Clim. Soc. 2010, 2, 148–167. [CrossRef]
  • Malhi, S.S.; Johnson, E.N.; Hall, L.M.; May, W.E.; Phelps, S.; Nybo, B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina Sativa. Can. J. Soil Sci. 2014, 94, 35–47. [CrossRef]
  • Walia, M.K.; Wells, M.S.; Cubins, J.; Wyse, D.; Gardner, R.D.; Forcella, F.; Gesch, R. Winter Camelina Seed Yield and Quality Responses to Harvest Time. Ind. Crops Prod. 2018, 124, 765–775. [CrossRef]
  • de Toro, A.; Gunnarsson, C.; Lundin, G.; Jonsson, N. Cereal Harvesting—Strategies and Costs under VariableWeather Conditions. Biosyst. Eng. 2012, 111, 429–439. [CrossRef]
  • Risius, H.; Prochnow, A.; Ammon, C.; Mellmann, J.; Hoffmann, T. Appropriateness of On-Combine Moisture Measurement for the Management of Harvesting and Postharvest Operations and Capacity Planning in Grain Harvest. Biosyst. Eng. 2017, 156, 120–135. [CrossRef]
  • ISO 18134-2:2017; Solid Biobuels Determination of Moisture Content—Oven Dry Method—Part 2 Total Moisture—Simplified Method. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71536.html (accessed on 8 January 2024).
  • Reith, S.; Frisch, J.;Winkler, B. Revision of theWorking Time Classification to OptimizeWork Processes in Modern Agriculture. Chem. Eng. Trans. 2017, 58, 121–126.
  • Assirelli, A.; Pignedoli, S. Costo Di Esercizio Delle Macchine Agricole. Cent. Ric. E Prod. Anim. CRPA 2005, 5, 1–10.
  • ASAE D497_4 FEB2003; Agricultural Machinery Management Data. ASAE Standards: St. Josep, MI, USA, 2003.
  • Banca d'Italia Banca d'Italia Lending Rate. Available online: https://www.Bancaditalia.it/ (accessed on 10 July 2022).
  • R Core Team. R: A Language and Environment for Statistical Computing; R Project for Statistical Computing: Vienna, Austria, 2021; pp. 275–286. Available online: https://www.r-project.org (accessed on 8 January 2024).
  • Zanetti, F.; Christou, M.; Alexopoulou, E.; Berti, M.T.; Vecchi, A.; Borghesi, A.; Monti, A. Innovative Double Cropping Systems Including Camelina [Camelina Sativa (L.) Crantz] a Valuable Oilseed Crop for Bio-Based Applications. Eur. Biomass Conf. Exhib. Proc. 2019, 127–130.
  • Righini, D.; Zanetti, F.; Martínez-Force, E.; Mandrioli, M.; Toschi, T.G.; Monti, A. Shifting Sowing of Camelina from Spring to Autumn Enhances the Oil Quality for Bio-Based Applications in Response to Temperature and Seed Carbon Stock. Ind. Crops Prod. 2019, 137, 66–73. [CrossRef]
  • Royo-Esnal, A.; Valencia-Gredilla, F. Camelina as a Rotation Crop forWeed Control in Organic Farming in a Semiarid Mediterranean Climate. Agriculture 2018, 8, 9090191. [CrossRef]
  • Florin, I.; Duda, M.M. Camelina Sativa: A New Source of Vegetal Oils. Rom. Biotechnol. Lett. 2011, 16, 6263–6270.
  • Gesch, R.W.; Archer, D.W. Double-Cropping with Winter Camelina in the Northern Corn Belt to Produce Fuel and Food. Ind. Crops Prod. 2013, 44, 718–725. [CrossRef]
  • Zheljazkov, V.D.; Vick, B.A.; Baldwin, B.S.; Buehring, N.; Coker, C.; Astatkie, T.; Johnson, B. Oil Productivity and Composition of Sunflower as a Function of Hybrid and Planting Date. Ind. Crops Prod. 2011, 33, 537–543. [CrossRef]
  • Brian Cross. Available online: https://www.producer.com/News/to-Swath-or-Not-to-Swath/2017 (accessed on 2 January 2024).
  • Brown, J.; Davis, J.B.; Erickson, D.A.; Brown, A.P. Effects of Swathing on Yield and Quality of Spring Canola in Northern Idaho. J. Prod. Agric. 1999, 12, 33–37. [CrossRef]
  • Price, J.S.; Hobson, R.N.; Neale, M.A.; Bruce, D.M. Seed Losses in Commercial Harvesting of Oilseed Rape. J. Agric. Eng. Res. 1996, 65, 183–191. [CrossRef]
  • Gubbels, G.H.; Bonner, D.M.; Kenaschuk, E.O. Effect of Time of Swathing and Desiccation on Plant Drying, Seed Color and Germination of Flax. Can. J. Plant Sci. 1993, 73, 1001–1007. [CrossRef]