Published June 5, 2019 | Version v1
Journal article Open

Time-energy Analysis of Multilevel Parallelism in Heterogeneous Clusters: the Case of EEG Classification in BCI Tasks

  • 1. Department of Computer Architecture and Technology, University of Granada, Spain

Description

Present heterogeneous architectures interconnect nodes including multiple multi-core microprocessors and accelerators that allow different strategies to accelerate the applications and optimize their energy consumption according to the specific power-performance trade-offs. In this paper, a multi-level parallel procedure is proposed to take advantage of all nodes of a heterogeneous CPU-GPU cluster. Two more alternatives have been implemented, and experimentally compared and analyzed from both running time and energy consumption. Although the paper considers an evolutionary master-worker algorithm for feature selection in EEG classification, the conclusions from the experimental analysis here provided can be frequently applied, as many other useful bioinformatics and data mining applications show the same master-worker profile than the classification problem here considered. Our parallel approach allows to reduce the time by a factor of up to 83, with only about a 4.9% of energy consumed by the sequential procedure, in a cluster with 36 CPU cores and 43 GPU compute units.

Files

Artículo postprint.pdf

Files (1.7 MB)

Name Size Download all
md5:9b0783cbda05199eaac778cda33d0939
1.7 MB Preview Download

Additional details

Funding

Ministerio de Ciencia, Innovación y Universidades
Ministerio de Ciencia, Innovación y Universidades PGC2018-098813-B-C31

Software

Repository URL
https://github.com/rotty11/Hpmoon
Programming language
C++, OpenCL