Time-energy Analysis of Multilevel Parallelism in Heterogeneous Clusters: the Case of EEG Classification in BCI Tasks
Creators
- 1. Department of Computer Architecture and Technology, University of Granada, Spain
Description
Present heterogeneous architectures interconnect nodes including multiple multi-core microprocessors and accelerators that allow different strategies to accelerate the applications and optimize their energy consumption according to the specific power-performance trade-offs. In this paper, a multi-level parallel procedure is proposed to take advantage of all nodes of a heterogeneous CPU-GPU cluster. Two more alternatives have been implemented, and experimentally compared and analyzed from both running time and energy consumption. Although the paper considers an evolutionary master-worker algorithm for feature selection in EEG classification, the conclusions from the experimental analysis here provided can be frequently applied, as many other useful bioinformatics and data mining applications show the same master-worker profile than the classification problem here considered. Our parallel approach allows to reduce the time by a factor of up to 83, with only about a 4.9% of energy consumed by the sequential procedure, in a cluster with 36 CPU cores and 43 GPU compute units.
Files
Artículo postprint.pdf
Files
(1.7 MB)
Name | Size | Download all |
---|---|---|
md5:9b0783cbda05199eaac778cda33d0939
|
1.7 MB | Preview Download |
Additional details
Funding
- Ministerio de Ciencia, Innovación y Universidades
- Ministerio de Ciencia, Innovación y Universidades PGC2018-098813-B-C31
Software
- Repository URL
- https://github.com/rotty11/Hpmoon
- Programming language
- C++, OpenCL