Published February 5, 2024 | Version v201
Dataset Open

Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021)

Description

The dataset contains maps of the main classes of agricultural land use (dominant crop types and other land use types) in Germany, which have been produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020). 

Version v201:
Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015). The final post-processing step comprises the aggregation of the gridded data to homogeneous objects (fields) based on the approach that is described in Tetteh et al. (2021) and Tetteh et al. (2023).

The maps are available in FlatGeobuf format, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the provided URL to the datasets (right click on the respective data set --> “copy link address”). By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability. 

 _______________________________________________________________________________________________________

Mailing list

If you do not want to miss the latest updates, please enroll to our mailing list.

 _______________________________________________________________________________________________________

 

References:

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell.
https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

Tetteh, G.O., Gocht, A., Erasmi, S., Schwieder, M., & Conrad, C. (2021). Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 9, 116702-116719.

Tetteh, G.O., Schwieder, M., Erasmi, S., Conrad, C., & Gocht, A. (2023). Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

___________________________________________________________________________

National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan;  licensed under CC BY 4.0. 

Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

Files

CTM_GER_2017-21_vector_accuracy_v201.pdf

Files (21.5 GB)

Name Size Download all
md5:1cbb5261d90ad925bafeefa1a336e6f5
275.3 kB Preview Download
md5:7517f943459ff7bd62fc02f745eae6db
4.4 GB Download
md5:962c7f11ab23095a40593b5ccf607df7
4.2 GB Download
md5:6bf6548e0a83a6d9b49e97d36a6115ab
4.3 GB Download
md5:b7837814036365973982dd845aff878c
4.3 GB Download
md5:fd0bea7c736c87b6950494a0429f01d6
4.3 GB Download
md5:311c1d88dc25aee50a5ccaad881c28d4
22.2 kB Download

Additional details

Dates

Available
2024-02-06