Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published June 9, 2024 | Version v1
Dataset Open

SuperAnimal-Quadruped-80K

  • 1. ROR icon École Polytechnique Fédérale de Lausanne

Description

Introduction

This dataset supports Ye et al. 2024 Nature Communications. Please cite this dataset and paper if you use this resource. Please also see Ye et al. 2024 for the full DataSheet that accompanies this download, including the meta data for how to use this data is you want to compare model results on benchmark tasks. Below is just a summary. Also see the dataset licensing below.

Training Data

It consists of being trained together on the following datasets:

  • AwA-Pose Quadruped dataset, see full details at (1).
  • AnimalPose See full details at (2).
  • AcinoSet See full details at (3).
  • Horse-30 Horse-30 dataset, benchmark task is called Horse-10; See full details at (4).
  • StanfordDogs See full details at (5, 6).
  • AP-10K See full details at (7).
  • iRodent We utilized the iNaturalist API functions for scraping observations with the taxon ID of Suborder Myomorpha (8). The functions allowed us to filter the large amount of observations down to the ones with photos under the CC BY-NC creative license. The most common types of rodents from the collected observations are Muskrat (Ondatra zibethicus), Brown Rat (Rattus norvegicus), House Mouse (Mus musculus), Black Rat (Rattus rattus), Hispid Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus), Deer Mouse (Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We then generated segmentation masks over target animals in the data by processing the media through an algorithm we designed that uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (9) model with a ResNet-50-FPN backbone (10), pretrained on the COCO datasets (11). The processed 443 images were then manually labeled with both pose annotations and segmentation masks. iRodent data is banked at https://zenodo.org/record/8250392
  • APT-36K See full details at (12).

Here is an image with a keypoint guide.

Ethical Considerations

• No experimental data was collected for this model; all datasets used are cited above.

Caveats and Recommendations

• Please note that each dataest was labeled by separate labs & separate individuals, therefore while we map names to a unified pose vocabulary, there will be annotator bias in keypoint placement (See Ye et al. 2024 for our Supplementary Note on annotator bias). You will also note the dataset is highly diverse across species, but collectively has more representation of domesticated animals like dogs, cats, horses, and cattle. We recommend if performance of a model trained on this data is not as good as you need it to be, first try video adaptation (see Ye et al. 2024), or fine-tune the weights with your own labeling.

License

Modified MIT.

Copyright 2023-present by Mackenzie Mathis, Shaokai Ye, and contributors. 

Permission is hereby granted to you (hereafter "LICENSEE") a fully-paid, non-exclusive,
and non-transferable license for academic, non-commercial purposes only (hereafter “LICENSE”)
to use the "DATASET" subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software:

This data or resulting software may not be used to harm any animal deliberately.

LICENSEE acknowledges that the DATASET is a research tool. 
THE DATASET IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DATASET OR THE USE OR OTHER DEALINGS IN THE DATASET.

If this license is not appropriate for your application, please contact Prof. Mackenzie W. Mathis 
(mackenzie@post.harvard.edu) for a commercial use license.

Please cite Ye et al if you use this DATASET in your work.

 

References

  1. Prianka Banik, Lin Li, and Xishuang Dong. A novel dataset for keypoint detection of quadruped animals from images. ArXiv, abs/2108.13958, 2021
  2. Jinkun Cao, Hongyang Tang, Haoshu Fang, Xiaoyong Shen, Cewu Lu, and Yu-Wing Tai. Cross-domain adaptation for animal pose estimation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9497–9506, 2019.
  3. Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fred Nicolls, Alexander Mathis, Mackenzie W. Mathis, and Amir Patel. Acinoset: A 3d pose estimation dataset and baseline models for cheetahs in the wild. 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13901–13908, 2021.
  4. Alexander Mathis, Thomas Biasi, Steffen Schneider, Mert Yuksekgonul, Byron Rogers, Matthias Bethge, and Mackenzie W Mathis. Pretraining boosts out-of-domain robustness for pose estimation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1859–1868, 2021.
  5. Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.
  6. Benjamin Biggs, Thomas Roddick, Andrew Fitzgibbon, and Roberto Cipolla. Creatures great and smal: Recovering the shape and motion of animals from video. In Asian Conference on Computer Vision, pages 3–19. Springer, 2018.
  7. Hang Yu, Yufei Xu, Jing Zhang, Wei Zhao, Ziyu Guan, and Dacheng Tao. Ap-10k: A benchmark for animal pose estimation in the wild. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
  8. iNaturalist. OGBIF Occurrence Download. https://doi.org/10.15468/dl.p7nbxt. iNaturalist, July 2020
  9. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017.
  10. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2016.
  11. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’ar, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014
  12. Yuxiang Yang, Junjie Yang, Yufei Xu, Jing Zhang, Long Lan, and Dacheng Tao. Apt-36k: A large-scale benchmark for animal pose estimation and tracking. Advances in Neural Information Processing Systems, 35:17301–17313, 2022

Files

Files (45.9 GB)

Name Size Download all
md5:3000a2cbd1db694f7ce075b5c15e19b8
45.9 GB Download

Additional details

Funding

Vallee Scholar Award NA
Vallee Foundation
Young Investigator Award NA
Novartis (Switzerland)
U01 Brain Initiative Grant 1UF1NS126566-01
National Institutes of Health

Dates

Available
2024-06-09